一元二次方程培优提高例题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方...程.就是一元二次方程。(2)一般表达式:)0(02acbxax⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例1、下列方程中是关于x的一元二次方程的是()A12132xxB02112xxC02cbxaxD1222xxx变式:当k时,关于x的方程3222xxkx是一元二次方程。例2、方程0132mxxmm是关于x的一元二次方程,则m的值为。针对练习:★1、方程782x的一次项系数是,常数项是。★2、若方程021mxm是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。★★3、若方程112xmxm是关于x的一元二次方程,则m的取值范围是。★★★4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322yy的值为2,则1242yy的值为。例2、关于x的一元二次方程04222axxa的一个根为0,则a的值为。说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x的一元二次方程002acbxax的系数满足bca,则此方程必有一根为。说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。例4、已知ba,是方程042mxx的两个根,cb,是方程0582myy的两个根,则m的值为。针对练习:★1、已知方程0102kxx的一根是2,则k为,另一根是。★2、已知关于x的方程022kxx的一个解与方程311xx的解相同。⑴求k的值;⑵方程的另一个解。★3、已知m是方程012xx的一个根,则代数式mm2。★★4、已知a是0132xx的根,则aa622。★★5、方程02acxcbxba的一个根为()A1B1CcbDa★★★6、若yx则yx324,0352。考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:mxmmx,02※※对于max2,22nbxmax等形式均适用直接开方法典型例题:例1、解方程:;08212x216252x=0;;09132x例2、解关于x的方程:02bax例3、若2221619xx,则x的值为。针对练习:下列方程无解的是()A.12322xxB.022xC.xx132D.092x类型二、因式分解法:021xxxx21,xxxx或※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如22nbxmax,cxaxbxax,0222aaxx典型例题:例1、3532xxx的根为()A25xB3xC3,2521xxD52x例2、若044342yxyx,则4x+y的值为。变式1:2222222,06b则ababa。变式2:若142yxyx,282xxyy,则x+y的值为。例3、方程062xx的解为()A.2321,xxB.2321,xxC.3321,xxD.2221,xx例4、解方程:04321322xx例5、已知023222yxyx,则yxyx的值为。变式:已知023222yxyx,且0,0yx,则yxyx的值为。针对练习:★1、下列说法中:①方程02qpxx的二根为1x,2x,则))((212xxxxqpxx②)4)(2(862xxxx.③)3)(2(6522aababa④))()((22yxyxyxyx⑤方程07)13(2x可变形为0)713)(713(xx正确的有()A.1个B.2个C.3个D.4个★2、以71与71为根的一元二次方程是()A.0622xxB.0622xxC.0622yyD.0622yy★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:★★4、若实数x、y满足023yxyx,则x+y的值为()A、-1或-2B、-1或2C、1或-2D、1或25、方程:2122xx的解是。类型三、配方法002acbxax222442aacbabx※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例1、试用配方法说明322xx的值恒大于0。例2、已知x、y为实数,求代数式74222yxyx的最小值。例3、已知,x、yyxyx0136422为实数,求yx的值。例4、分解因式:31242xx针对练习:★★1、试用配方法说明47102xx的值恒小于0。★★2、已知041122xxxx,则xx1.★★★3、若912322xxt,则t的最大值为,最小值为。1、关于x的方程20xpxq的两根同为负数,则()A.0p且q0B.0p且q0C.0p且q0D.0p且q02、如果方程022mxx有两个同号的实数根,则m的取值范围是()A、m<1B、0<m≤1C、0≤m<1D、m>0类型四、公式法⑴条件:04,02acba且⑵公式:aacbbx242,04,02acba且典型例题:例1、选择适当方法解下列方程:⑴.6132x⑵.863xx⑶0142xx⑷01432xx⑸5211313xxxx说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式法;一般不选择配方法。例2、在实数范围内分解因式:(1)3222xx;(2)1842xx.⑶22542yxyx说明:①对于二次三项式cbxax2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令cbxax2=0,求出两根,再写成cbxax2=))((21xxxxa.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。典型例题:例1、已知0232xx,求代数式11123xxx的值。例2、如果012xx,那么代数式7223xx的值。例3、已知a是一元二次方程0132xx的一根,求1152223aaaa的值。说明:在运用降次思想求代数式的值的时候,要注意两方面的问题:①能对已知式进行灵活的变形;②能利用已知条件或变形条件,逐步把所求代数式的高次幂化为低次幂,最后求解。例4、用两种不同的方法解方程组)2(.065)1(,6222yxyxyx说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再消元。但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已知的问题.考点四、根的判别式acb42根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。典型例题:例1、若关于x的方程0122xkx有两个不相等的实数根,则k的取值范围是。例2、关于x的方程0212mmxxm有实数根,则m的取值范围是()A.10且mmB.0mC.1mD.1m例3、已知关于x的方程0222kxkx(1)求证:无论k取何值时,方程总有实数根;(2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。例4、已知二次三项式2)6(92mxmx是一个完全平方式,试求m的值.说明:若二次三项式为一个完全平方式,则其相应方程的判别式0即:若042acb,则二次三项式cbxax2)0(a为完全平方式;反之,若cbxax2)0(a为完全平方式,则042acb.例5、m为何值时,方程组.3,6222ymxyx有两个不同的实数解?有两个相同的实数解?针对练习:★1、当k时,关于x的二次三项式92kxx是完全平方式。★2、当k取何值时,多项式kxx2432是一个完全平方式?这个完全平方式是什么?★3、已知方程022mxmx有两个不相等的实数根,则m的值是.★★4、k为何值时,方程组.0124,22yxykxy(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.★★★5、当k取何值时,方程04234422kmmxmxx的根与m均为有理数?考点五、方程类问题中的“分类讨论”典型例题:例1、关于x的方程03212mxxm⑴有两个实数根,则m为,⑵只有一个根,则m为。例2、不解方程,判断关于x的方程3222kkxx根的情况。例3、如果关于x的方程022kxx及方程022kxx均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k的值;若没有,请说明理由。考点六、根与系数的关系⑴前提:对于02cbxax而言,当满足①0a、②0时,才能用韦达定理。⑵主要内容:acxxabxx2121,⑶应用:整体代入求值。典型例题:例1、已知一个直角三角形的两直角边长恰是方程07822xx的两根,则这个直角三角形的斜边是()A.3B.3C.6D.6说明:要能较好地理解、运用一元二次方程根与系数的关系,必须熟练掌握ba、ba、ab、22ba之间的运算关系.例2、解方程组:.2,10)2(;24,10)1(22yxyxxyyx说明:一些含有yx、22yx、xy的二元二次方程组,除可以且代入法来解外,往往还可以利用根与系数的关系,将解二元二次方程组化为解一元二次方程的问题.有时,后者显得更为简便.例3、已知关于x的方程011222xkxk有两个不相等的实数根21,xx,(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不存在,请说明理由。例4、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道原来的方程是什么吗?其正确解应该是多少?例5、已知ba,0122aa,0122bb,求ba变式:若0122aa,0122bb,则abba的值为。例6、已知,是方程012xx的两个根,那么34.针对练习:1、解方程组)2(5)1(,322yxyx2.已知472aa,472bb)(ba,求baab的值。3、已知21,xx是方程092xx的两实数根,求663722231xxx的值。

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功