1专训3数轴、相反数、绝对值的综合应用名师点金:数轴是“数”与“形”结合的工具,有了数轴可以由点读数,也可以由数定点,还可以从几何意义上去理解相反数和绝对值;同时利用数轴可以求相反数,化简绝对值等.总之,这三者之间是相互依存,紧密联系的.点、数对应问题题型1数轴上的整数点的问题1.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数点有个.(第1题)2.在数轴上任取一条长为201613个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为()A.2017B.2016C.2015D.2014题型2数轴上的点表示的数的确定3.已知数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A,B两点分别表示的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C表示的数.2求值问题题型1利用数轴求值4.如图,已知数轴上的点A和点B分别表示互为相反数的两个数a,b,且a<b,A,B两点间的距离为412,求a,b的值.(第4题)题型2绝对值非负性的应用5.已知|15-a|+|b-12|=0,求2a-b+7的值.6.当a为何值时,|1-a|+2有最小值?并求这个最小值.7.当a为何值时,2-|4-a|有最大值?并求这个最大值.3化简问题8.三个有理数a,b,c在数轴上的对应点的位置如图所示,其中数a,b互为相反数.试求解以下问题:(第8题)(1)判断a,b,c的正负性;(2)化简|a-b|+2a+|b|.实际应用问题9.一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,一共行驶了多少千米?【导学号:11972022】4答案1.12点拨:被墨水污染部分对应的整数有-12,-11,-10,-9,-8,10,11,12,13,14,15,16,共12个.2.A3.解:(1)A点表示的数为-8,B点表示的数为24.(2)由已知得,当点C在原点左边时,点C到原点的距离为12个单位长度;当点C在原点右边时,点C到原点的距离为6个单位长度.综上所述,点C表示的数为6或-12.4.解:因为a与b互为相反数,所以|a|=|b|=412÷2=214.又因为a<b,所以a=-214,b=214.5.解:由|15-a|+|b-12|=0,得15-a=0,b-12=0,所以a=15,b=12.所以2a-b+7=2×15-12+7=25.6.解:当a=1时,|1-a|+2有最小值,这个最小值为2.7.解:当a=4时,2-|4-a|有最大值,这个最大值为2.8.解:(1)a<0,b>0,c<0.(2)因为a,b互为相反数,所以b=-a.又因为a<0,b>0,所以|a-b|+2a+|b|=|2a|+2a+|b|=-2a+2a+b=b.点拨:本题中虽没有标出数轴上原点的位置,但由已知条件a,b互为相反数,即可确定出原点位置在表示数c和数b的两点之间,从而可以确定出a,b,c的正负性.(2)题化简时,既用到了a,b的正负性,同时还利用了a,b互为相反数这一条件.9.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:一共行驶了87千米.点拨:利用绝对值求距离、路程问题中,当出现用“+”“-”号表示带方向的路程时,求一共行驶的路程时,实际上是求绝对值的和.