121212211mmjjmjmj讨论角动量J1和J2的共同本征矢量zJJJJ,,,22221与J=J1+J2(的共同本征矢量)的本征矢量jmjj21之间的关系,是两组基矢之间的关系。§23-1两个角动量的耦合互相对易的两个角动量算符J1和J2,它们的矢量和算符是21JJJJ1和J2可以是系统两个子系统的角动量,这时J就是大系统的总角动量;也可以是同一个系统不同的角动量,如一个电子的轨道角动量和自旋角动量,这时J就是电子的总角动量。§23角动量的耦合2一、Clebsch-Gordan系数(CG系数)任何系统所在的Hilbert空间总可以写成两个空间的直积:其中不受空间转动的影响,在空间转动时要发生相应的变化。后一空间的基矢jm就是这个系统角动量本征矢量。jmjj2122JzJ222mj子系统2的相应量为,和22)(21JJJzzzJJJ21和大系统的总角动量为21JzJ111mj设子系统1的角动量算符为,本征矢量为和本征矢量为32211mjmj描写大系统的态矢量随空间转动而变的那一部分,从两个子系统角度讲是在空间jmjj21中,而从大系统的角度讲,是在空间中,两组基矢所张的空间是同一个空间,两组基矢可以通过一个幺正变换相联系。,4和,1j2j2211mjmjjmjj21取固定的和的关系为12212121221121mmjmjjmmjjmjmjjmjj式中22112121mjmjmmjj可写成122121221121mmjjjmmmSmjmjjmjj式中jmjjmmjjSjjjmmm21212121212121jjjmmmS21jj是在这确定的子空间中的两组基矢变换的2121mmjj不耦合表象:jmjj21耦合表象:幺正矩阵,称为CG系数,Wigner系数或矢量耦合系数。5二、由j1和j2确定j1.重要关系j1和j2取定的子空间,从不耦合表象看,是(2j1+1)(2j2+1)维的。耦合表象的基矢也应该是(2j1+1)(2j2+1)个,由此看j的取值范围。对23.3122121221121mmjjjmmmSmjmjjmjj两边用zzzJJJ21分别作用,有12212122112121)(mmjjjmmmzzzSmjmjJJjmjjJ即12212122112121)(mmjjjmmmSmjmjmmjmjjm由此得21mmm6'mm'jm2211mjmj设,即可以表示成的叠加,122121'221121'mmjjjmmmSmjmjjmjj21JJJyxiJJJ上式两边用作用(),当左边的m’由于受到J±的作用变为m时,(-j≤m≤j),右边的m1和m2也由于受到J1±和J2±的作用取不同的值,而且不会所有的项都成为0,这样23.3式仍然成立,这证明,若对某一个m’,|jm’在此空间,则所有的2j+1个|jm必然也在此空间。72.j的最大值和最小值最大的j应该是j1+j2。反证之:设jj1+j2的|jm也可表示为|j1m1|j2m2的叠加,用J+=J1++J2+分别作用于等号两边若干次,使左边为|jj(jj1+j2),这时右边各项已全部为0,此时m=m1+m2已不再满足。所以jj1+j2是不可能的。8设最小值为x,根据耦合表象和不耦合表象的基矢数目相等,有]12[]1)1(2[]1)(2[)12)(12(212121xjjjjjj右边是一个等差级数,共(j1+j2-x+1),这样有)1(2]12[]1)(2[)12)(12(212121xjjxjjjj由此得2212)(jjx即最小的j值是|j1-j2|,最后得21212121,,2,1,jjjjjjjjj9三、CG系数的正交性关系CG系数2121jjjmmmS是幺正矩阵元,满足正交性关系:ISS11122221212121''*''jjmmmjjjjmjjjmmmjjmmmjSSISS2121221121212121''*''jjjjjmmmmjjmjjmjmmjjjmmmSS式中212121*2121mmjjjmjjSjjmjmm事实上,CG系数的国际标准值都是实数,所以21212121212121212121*jjjmmmjjmjmmSjmjjmmjjmmjjjmjjS10§23-2CG系数的计算一、m=j的特殊情况2121jjjmmmS21mma若m=j,将简写为,根据CG系数的定义122121221121mmjjjmmmSmjmjjmjj有1221),(21221121mmmmjmmamjmjjjjj21,mm符号对的取值范围进行了明确的限制。zzzJJJ2121mma计算时利用两个性质:等号两边都是jmm210jjJ的本征矢量,本征值为;利用的性质。111221),()(021221121mmmmjmmamjmjJJjjJ12211221),(),(21221122122111mmmmmmmmjmmamjmjJjmmamjmjJ即:12211221),()1)((1,),()1)((1,21222222112111112211mmmmmmmmjmmamjmjmjmjjmmamjmjmjmj22.5322'1mm11'1mm1212121211221111,'112'11222222'1,12',1,'1()(1)('1,)'1,1()(1)('1,)mmmmmmmmjmjmjmjmammjjmjmjmjmammj12上式第二项再做代换,122mm,有'21,1'222222111221),1'()1)((1,1',mmmmjmmamjmjmjmj'1211,1'222222111221),'())(1(,1',mmmmjmmamjmjmjmj上式第一项再做代换,111mm,有1221'211',11112211),1'()1)((1',1,mmmmjmmamjmjmjmj1'211',1111122111221),'())(1(1',,mmmmjmmamjmjmjmj与星式比较,则第二项代换后等于星式第一项,第一项代换后等于星式第二项,所以由第二项代换后等于星式第一项得:'1211,1'222222111221),'())(1(,1',mmmmjmmamjmjmjmj1221),()1)((1,2111112211mmmmjmmamjmjmjmj13),()1)(())(1(211,1111122222121jmmamjmjmjmjammmm11212121,3,32,2~~~jjjmmmmmmaaaa得递推公式:递推下去,得即m1增大到最大j1,m2减小到最小j-j1。(m1+m2=j)最终:amjmjmjmjamjmm)!()!()!()!()1(221122111121其中11,1221)!2()!()!(jjjajjjjjjja与m1,m2无关的常数,可以用|j1j2jj的归一化条件得出a即23.16式,代入23.14,得2121jjjjmmS23.17式14二、一般的CG系数的2121jjjmmmS的求法根据1,)1)((mjmjmjjmJ易推出jmmjmjjjjJmjmj)!()!()!2()()(次mjJmj(即作用之后,)由此得jjJmjjmjjmjjmj)()!()!2()!(21所以jjjjJmjmjmjjmjjmjjmjmjSmjjjjmmm212211212211)()!()!2()!(2121取其负共轭,利用21JJJ21*JJJ22112121*)()!()!2()!(2121mjmjJJjjjjmjjmjSmjjjjmmm,,得15由二项式定理得smjssmjJJsmjsmjJJ)()()!(!)!()(2121则有222111221121)()()!(!)!()(mjJmjJsmjsmjmjmjJJsmjssmj)!()!()!()!()!()!()!()!(,,)!(!)!(22222222111111112211smjmjmjsmjmjmjmjsmjsmjmjsmjmjsmjsmjsmjs将此式代入23.18式,利用23.17式(m=j的情况)为“边界”条件,注意到2121jjjmmmS得到CG系数的最后结果:23.19式(Edmonds)为实数,16),(212121mmmSjjjmmm)!()!()!()!()!1()!()!()!()!()!()12(2211212121221121mjmjjjjjjjjjjmjmjmjmjjjjjssmjsmjjsmjsmjssmjjsmj)!()!()!(!)!()!()1(1211121111式中:满足m=m1+m2,求和变量的取值范围是不使分母括号中的量为负的所有正整数;j1,j2,m1,m2可以取整数,也可以取半数。mj时,12120jjmmjmS17等价的Racah形式:)!1()!()!()!()12(),(21211221212121jjjjjjjjjjjjjmmmSjjjmmm)!()!()!()!()!()!(22221111mjmjmjmjmjmjzzzmjzmjzjjjz)!()!()!(!1)1(221121..)!()!(12112zmjjzmjj注意各值关系和范围:21mmmjmj21212121,,2,1,jjjjjjjjj,18三、查CG系数表j1j21212jjmmjmS121112121jjS212121210,1,21,21jjjjjmmmSS212121210,0,21,21jjjjjmmmSS12121211,1,21,21jjjjjmmmSS?210,0,21,21jjS?210,1,21,21jjS19§23-3CG系数和转动矩阵一、CG系数与转动群表示之间的关系JnnieD)()()(111111111111nnJnjmmmiDmjmjemjD)()(122222222222nnJnjmmmiDmjmjemjD20于是在直积空间中有2211)(221121)(mjmjemjmjDiJJnn)(21212121,2211njjmmmmmmDmjmj式中)()()(212121nnnjjjjDDD对耦合表象基矢jmjj212)J(JJ212zJ,它是和的本征矢量,因而也是转动群的一个不可约表示的基矢:)(')(''212121nnJnjmmmiDjmjjjmjjejmjjD21以上两套基矢通过CG系数联系起来:212121221121jjjmmmmmSmjmjjmjj其逆变换是:jmmjmmjjSjmjjmjmj12122112121)(令(23.24)两边经受一个转动Q,则有jmmmmmSmjQDmjQDjmjjQD212122211121)(