复-合-函-数-的-求-导-法-则

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

复合函数的求导法则一、复合函数的求导法则1、引例(1)求的导数xy2sin解1xxy2cos)2(sin解2因为xxxycossin22sin所以])(cossincos)[(sin2xxxxyxxx2cos2)sin(cos222解1是错误的。因为是基本初等函数,而是复合函数。xysinxy2sin(2)求y=lnsinx的导数??2、法则5设,且在点处可导,在相应点处可导。则函数在点处也可导,且或记作)(),(xuufy)(xux)(ufy)(xu)]([xfyxxuxuyy证:设自变量在点处取得改变量,中间变量则取得相应改变量,从而函数取得改变量。当时,xxxuuyy0uxuuyxy有因为在处可导,从而在处必连续,)(xuxx所以当时,。因此0x0uxuuyxuuyxyxuxxx00000limlimlimlimlimdxdududydxdyxuxuyy于是得即当时,可证上式亦成立。0u)()(xufyx求的导数xy2sin因为uysinxu2于是xuxu)2()(sinxu2cos22cosxuxuyy解:设则二、举例(A)例1求函数的导数5)23(xy解:设,23xu5uy因为,3,54xuuuy所以xuxuyy(B)例2求函数的导数)1ln(2xy21xuuyln因为,2,1xuuyxu所以12)2(12xxxuuyyxux444)23(153)23(535xxu则(A)例3求函数的导数xy2cos解:设则xucos2uy因为xuuyxusin,2所以xuxuyyxxxxu2sinsincos2)sin(2练习(A)1、求函数的导数xeytan解:设xueyutan,因为xueyxuu2cos1,所以xuxuyyxeu2cos1xex2tancos1的导数、求xyAsinln2)(xuuysin,ln解:xuxuxxuuyy)(sin)(lnxxxxucotcossin1cos1复合函数的求导法则可推广到有限次复合的情形。如设那么对于复合函数,我们有如下求导法则:),(),(),(xvvuufy)]}([{xfyxvuxvuyy)()()(xvufy(B)例4求的导数2tan2xy解:设,2uy2,tanxvvu由得)()()(xvufy2sec2tan21sectan2)2(sec2)()(tan)(2222xxvvxvuvvuy即(B)例5求的导数。)42tan(lnxy解:设42,tan,lnxvvuuy由得)()()(xvufy)42()(tan)(lnxvuy21)42(cos1)42tan(12xx.sec)2sin(1)42cos()42sin(21xxxx21cos112vu熟悉了复合函数的求导法则后,中间变量默记在心,由外及里、逐层求导。(A)例6求的导数5)23(xy解:y'=[(3x+2)5]'=5(3x+2)4(3x+2)'=5(3x+2)4(3+0)=15(3x+2)4(A)例7求的导数xy2cos解:y'=[(cosx)2]'=2cosx(cosx)'=2cosx(-sinx)x2sin(B)例8求的导数32sinxy解:y'={[sin(x3)]2}'=2sin(x3)[sin(x3)]'=2sin(x3)cos(x3)(x3)'=2sin(x3)cos(x3)3x2=6x2sin(x3)cos(x3)(B)例9求的导数xy4sinln解:y'={ln[sin(4x)]}'=[sin(4x)]'x4sin1=cos(4x)(4x)'x4sin1x4sin4=cos(4x)x4cot4(C)例10求的导数2cotxy解:)2(cot)2(cot21)2cot(21xxxy)2(2sin12cot1212xxx2cot12sin1412xx2sin42tan2xx练习求下列函数的导数(A)1.xey3解:xxxexeey3333)3()((A)2.)cos(3xy解:)(sin)(cos333xxxy32sin3xxxey1sin)1(sin1sinxeyx)1(1cos1sinxxexxxex1cos)1(21sinxexx1cos11sin2(B)3.解:(C)4.32ln1xy)ln1()ln1(3121312xxy解:])(ln1[)ln1(312322xx])(lnln20[)ln1(31322xxxxxxln12)ln1(31322xxxln)ln1(32322(A)例11求下列函数的导数综合运用求导法则求导xexy22sin).1()2(sin2xexy解:)()2(sin2xex)2()2(2cos2xexxxxex222cos233)(lnln).2(xxy])[(ln)(ln33xxy解:)(ln)(ln3)(1233xxxxxxxx1)(ln331223])(ln1[3)(ln3322xxxxx(B)例12求下列函数的导数321)45(xxy解:y312)1()45(xx])1)[(45(312xx)1()1(31)45()1(1032231xxxx.)1(1)45(311103223xxxx(1)42)sin(xxy解:)sin()sin(4232xxxxy])(sin[)sin(4232xxxx])(sinsin21[)sin(432xxxx)cossin21()sin(432xxxx)2sin1()sin(432xxx(2)先化简再运用导数法则求导(C)例13求下列函数的导数112xxy解:先将已知函数分母有理化,得)1)(1(1222xxxxxxy12xxy)1(121122xx112xx(1)xxycos1sin2解:因为xxycos1sin2xxxcos1cos1cos12所以xysin11lnxxy解:因为11lnxxy)]1ln()1[ln(21xx所以y211)1111(21xxx(2)(3)练习求下列函数的导数xeyAx3sin.1)(221.2)(xxeeyA)3(sin3sin)(22xexeyxx解:)3(3cos3sin)2(22xxexxexxxexexx3cos33sin222)()(解:21xxeey)(1212xexexx)(22121xxxexe22112xxxeexxxyC2cos12sin.4)(xxxxxxycotsincossin211cossin22解:)(cotxyx2csc1)1(.3)(2xxyB)1)(1(1)1(22xxxxy解:12x)1()1(21)1(2212xxx12xxxx2)1)(1(212121)1(122xxxx11222xxx三、小结1、复合函数求导的关键,在于首先把复合函数分解成初等函数或基本初等函数的和、差、积、商,然后运用复合函数的求导法则和适当的导数公式进行计算。求导之后应该把引进的中间变量代换成原来的自变量。2、熟悉了复合函数的求导法则后,可不写出中间变量,直接由外及里、逐层处理复合关系进行求导。3、有些函数可先化简再求导。返回第二单元目录

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功