全等三角形复习经典例题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

全等三角形(复习)1.全等三角形的性质:对应边、对应角、对应线段相等,周长、面积也相等。2.全等三角形的判定:知识点回顾①一般三角形全等的判定:SAS、ASA、AAS、SSS②直角三角形全等的判定:SAS、ASA、AAS、SSS、HL知识点回顾3.三角形全等的证题思路:已知一边一角ASA找夹边已知两角SAS找夹角已知两边SSS找另一边HL找直角SAS找夹角的另一边边为角的邻边AAS找任一角ASA找夹角的另一角AAS找边的对角AAS找任一边①②③边为角的对边方法指引全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时:①要观察待证的线段或角,在哪两个可能全等的三角形中。②分析要证两个三角形全等,已有什么条件,还缺什么条件。注意:有些题可能要证明多次全等或者进行一些必要的等价转化1、已知两边及其中一边的对角分别对应相等的两个三角形不一定全等。2、经过平移、翻折、旋转等变换得到的三角形和原三角形全等。在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F。(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求的值。GHCDAB真题回放全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。例1:如图所示,△ABC的两条高BD、CE相交于点P,且PD=PE。求证:AC=AB。证明:连结AP。因为∠PDA=∠PEA=90°,PD=PE,PA=PA,所以△PDA≌△PE(HL)所以AD=AE又因为∠CAE=∠BAD所以△ACE≌△ABD(ASA)所以AC=AB例2:求证:三角形一边上的中线小于其他两边之和的一半。已知:如图,AD是△ABC的中线,求证:)(21ACABADABCDE证明:延长AD到E,使DE=AD,连结BEEDBADC∵AD是△ABC的中线∴BD=CD又∵DE=AD∴△ADC≌△EDB(SAS)∴AC=EB在△ABE中,AEAB+BE=AB+AC即2ADAB+AC∴)(21ACABAD例3:如图所示,△ABC中,∠ABC=2∠C,∠BAC的平分线交BC于D。求证:AB+BD=AC思路1:延长AB到E,使BD=BE,证明△AED≌△ACD。证明:延长AB到E,使BE=BD,连结ED,则∠E=∠BDE。∴∠ABD=∠E+∠BDE=2∠E又∵∠ABC=2∠C,∴∠C=∠E∵∠AD平分∠BAC,∴∠1=∠2,又∵AD=AD,∴△ADE≌△ADC,∴AC=AE。即AC=AB+BE=AB+BD。思路2:在AC上取一点E,使AE=AB,证明△AED≌△ABD。例4:正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.思路:利用全等变换中的“旋转”证明:延长CB到G,使BG=DF.由BG=DF,∠ABG=∠D=90°,AB=AD,得出△ADF≌△ABG(SAS)所以∠GAB=∠FAD,AG=AF.又因为BE+DF=EF,所以EF=EG.由EF=EG,AG=AF,AE=AE,得出△AEF≌△AEG(SSS)所以∠GAE=∠FAE因为∠BAF+∠FAD=∠BAF+∠GAB=∠GAF=90°,所以∠EAF=1/2∠GAF=45°FEDCBA总结提高学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”;(5)添加恰当的铺助线,问题迎刃而解。再见

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功