专题特训带电粒子在交变电场中的运动特训要点:带电粒子在交变电场中的运动分析,涉及电场知识、力学知识等内容,随着科技的发展及高考试题应用性、实践性的增强和提高,本训练点知识在整个电磁学中的位置愈加显得重要.通过训练,逐步掌握此类问题的分析方法.第11题为创新题,使我们了解本训练点知识在实践中的应用.常出现的一些变化是:1释放位置;2所加电压波形;3电压、板间距、周期、比荷等间的约束。往复运动:在两金属板之间加交变电压,粒子平行金属板射入,需要考虑的情况:1.粒子有沿极板方向的初速度。2.受垂直于极板方向的交变电场力。3.粒子通过电场时间相对电场周期较大,运动过程中受变化的电场力(粒子运动过程中受力随时间在变。4.在电压波形上做文章,在入射时刻上,入射位置上。5.常规的考法:矩形电压,沿中线射入,t=0或t=T/4射入。6.t=0射入,整周期射出时平行极板射出;t=T/4射入整周期射出时平行且沿中线射出。(不打到极上)t=0射入,整周期射出时平行极板射出;t=T/4射入整周期射出时平行且沿中线射出1.在两金属板(平行)分别加上如图2—7—1中的电压,使原来静止在金属板中央的电图2—7—12.有一个电子原来静止于平行板电容器的中间,设两板的距离足够大,今在t=0开始在两板间加一个交变电压,使得该电子在开始一段时间内的运动的v—t图线如图2—7—2(甲)所示,则该交变电压可能是图2—7—2(乙)图2—7—2(乙)3.一个匀强电场的电场强度随时间变化的图象如图2—7—3所示,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力的作用,则电场力的作用和图2—7—2(甲)图2—7—3A.B.0~3s内,电场力的冲量等于0,电场力的功亦等于0C.3sD.2s~4s内电场力的冲量不等于0,而电场力的功等于04.一束电子射线以很大恒定速度v0射入平行板电容器两极板间,入射位置与两极板等距离,v0的方向与极板平面平行.今以交变电压U=Umsinωt加在这个平行板电容器上,则射入的电子将在两极板间的某一区域内出现.图2—7—4中的各图以阴影区表示这一区域,其图2—7—45.图2—7—5中A、B是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l,两极板间加上低频交变电流.A板电势为零,B板电势U=U0cosωt,现有一电子在t=0时穿过A板上的小孔射入电场,设初速度和重力的影响均可忽略不计,图2—7—5A.以ABB.时而向B板运动,时而向A板运动,但最后穿出BC.如果ω小于某个值ω0,l小于某个值l0,电子一直向B板运动,最后穿出BD.一直向B板运动,最后穿出B板,而不论ω、l二、填空题(每小题6分,共126.如图2—7—6(甲)所示,在两块相距d=50cm的平行金属板A、B间接上U=100V的矩形交变电压,(乙)在t=0时刻,A板电压刚好为正,此时正好有质量m=10-17kg,电量q=10-16C的带正电微粒从A板由静止开始向B板运动,不计微粒重力,在t=0.04s时,微粒离A板的水平距离是______s.图2—7—67.如图2—7—7所示,水平放置的平行金属板下板小孔处有一静止的带电微粒,质量m,电量-q,两板间距6mm,所加变化电场如图所示,若微粒所受电场力大小是其重力的2倍,要使它能到达上极板,则交变电场周期T至少为_______.图2—7—7三、计算题(共638.(15分)N个长度逐个增大的金属圆筒和一个靶,沿轴线排成一串,如图2—7—8所示(图中只画出了6个圆筒做为示意).各筒和靶相间的接到频率为f,最大电压为U的正弦交流电源的两端.整个装置放在真空容器中,圆筒的两底面中心开有小孔,有一质量为m,带电量为q的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(圆筒内都没有电场),缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差φ1-φ2=-φ,为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子动能.图2—7—89.(15分)如图2—7—9(甲)为平行板电容器,板长l=0.1m,板距d=0.02m.板间电压如图(乙)示,电子以v=1×107m/s的速度,从两板中央与两板平行的方向射入两板间的匀强电场,为使电子从板边缘平行于板的方向射出,电子应从什么时刻打入板间?并求此交变电压的频率.(电子质量m=9.1×10-31kg,电量e=1.6×10-19C)图2—7—910.(15分)如图2—7—10甲所示,A、B为两块距离很近的平行金属板,板中央均有小孔.一电子以初动能EkO=120eV,从A板上的小孔O不断地垂直于板射入A、B之间,在B板的右侧,偏转板M、N组成一匀强电场,板长L=2×10-2m,板间距离d=4×10-3m;偏转板加电压为U2=20V,现在A、B间加一个如图乙所示的变化电压U1,在t=2s时间内,A板电势高于B板,则在U1随时间变化的第一周期内.图2—7—10(1)在哪段时间内,电子可从B板上小孔O(2)在哪段时间内,电子能从偏转电场右侧飞出?(由于A、B两板距离很近,可以认为电子穿过A、B11.(18分)示波器是一种多功能电学仪器,可以在荧光屏上显示出被检测的电压波形.它的工作原理等效成下列情况:(如图2—7—11所示)真空室中电极K发出电子(初速不计),经过电压为U1的加速电场后,由小孔S沿水平金属板,A、B间的中心线射入板中.板长L,相距为d,在两板间加上如图乙所示的正弦交变电压,前半个周期内B板的电势高于A板的电势,电场全部集中在两板之间,且分布均匀.在每个电子通过极板的极短时间内,电场视作恒定的.在两极板右侧且与极板右端相距D处有一个与两板中心线垂直的荧光屏,中心线正好与屏上坐标原点相交.当第一个电子到达坐标原点O时,使屏以速度v沿-x方向运动,每经过一定的时间后,在一个极短时间内它又跳回到初始位置,然后重新做同样的匀速运动.(已知电子的质量为m,带电量为e,不计电子重力)图2—7—11(1)电子进入AB(2)要使所有的电子都能打在荧光屏上,图乙中电压的最大值U0(3)要使荧光屏上始终显示一个完整的波形,荧光屏必须每隔多长时间回到初始位置?计算这个波形的最大峰值和长度.在如图2—7—11丙所示的x-y坐标系中画出这个波形.11、图1中B为电源,电动势ε=27V,内阻不计.固定电阻R1=500Ω,R2为光敏电阻.C为平行板电容器,虚线到两极板距离相等,极板长l1=8.0×10-2m,两极板的间距d=1.0×10-2m.S为屏,与极板垂直,到极板的距离l2=0.16m.P为一圆盘,由形状相同、透光率不同的三个扇形a、b和c构成,它可绕AA′轴转动.当细光束通过扇形a、b、c照射光敏电阻R2时,R2的阻值分别为1000Ω、2000Ω、4500Ω.有一细电子束沿图中虚线以速度v0=8.0×106m/s连续不断地射入C.已知电子电量e=1.6×10-19C,电子质量m=9×10-31kg.忽略细光束的宽度、电容器的充电放电时间及电子所受的重力.假设照在R2上的光强发生变化时R2阻值立即有相应的改变.(1)设圆盘不转动,细光束通过b照射到R2上,求电子到达屏S上时,它离O点的距离y(计算结果保留二位有效数字).(2)设转盘按图1中箭头方向匀速转动,每3秒转一圈.取光束照在a、b分界处时t=0,试在图给出的坐标纸上,画出电子到达屏S上时,它离O点的距离y随时间t的变化图线(0-6s间).要求在y轴上标出图线最高点与最低点的值.(不要求写出计算过程,只按画出的图线评分.)12、从阴极K发射的电子(电荷量为e=1.60×10-19C,质量约为m=1×10-30Kg),?经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有记录纸的圆筒.整个装置放在真空内,电子发射的初速度不计.若在两金属板上加以U2=1000cos2πtV的交变电压,并使圆筒绕中心轴如图所示方向以n=2r/s匀速转动,试求:(1)电子进入偏转电场的初速度v0.(2)电子在纸筒上的最大偏转距离.(3)确定电子在记录纸上的轨迹形状并画出1s内所记录到的图形.参考答案一、1.BC2.AB3.BCD4.ACD不同时刻入射的电子在不同瞬时电压下,沿不同抛物线做类平抛运动,其轨迹符合方程y=dmveU202x2(U为变化电压),x轴正向为初速v0方向,y轴的正方向垂直于初速v0向上或向下.电压低时从板间射出,电压高时打在板上,电子在板间出现的区域边界应为开口沿纵坐标方向的抛物线.5.AC二、6.0.4m7.6.0×10-2s三、8.由于金属筒对电场的屏蔽作用,使离子进入筒后做匀速直线运动,只有当离子到达两筒的缝隙处才能被加速.这样离子在筒内运动时间为t=fT212(T、f分别为交变电压周期、频率)①,设离子到第1个筒左端速度为v1,到第n个筒左端速度vn,第n个筒长为Ln,则Ln=vn·t从速度v1加速vn经过了(n-1)次加速,由功能关系有:21mvn2=21mv12+(n-1)·qU③联立得Ln=mnqUvf)1(22121Ekn=221nmv=21mv12+(n-1)qU令n=N,则得打到靶上离子的最大动能21mvN2=21mv12+(N-1)qU9.电子水平方向匀速直线运动,竖直方向做变加速运动.要使电子从板边平行于板方向飞出,则要求电子在离开板时竖直方向分速度为0,并且电子在竖直方向应做单向直线运动向极板靠近.此时电子水平方向(x方向)、竖直方向(y)方向的速度图线分别如图所示.电子须从t=n2T(n=0,1,2,…)时刻射入板间,且穿越电场时间t=kT(k=1,2…)①,而电子水平位移l=vt竖直位移21d=2120)2(TmdeU·2k③三式联立得,T=leUmvd022=2.5×10-9s,k=4,故f=1/T=4×108Hz,且k=4.10.(1)0~2s电子能从O′射出,动能必须足够大,由功能关系得U1e<Ek0U1<120V所以当t<0.6或t>1.4时,粒子可由B板小孔O′射出.(2)电子进入偏转极板时的水平速度为v,通过偏转电极时,侧向偏移是y,y=dmveLU2222能从偏转电场右侧飞出的条件是y<2d得21mv2>2222dleU代入数字的21mv2>250eV,即AB间必须有130V的加速电压,所以当2.65s<t<3.35s时,电子能从偏转电场右侧飞出,如图所示.11.(1eU1=21mv12,v1=meU12(2)因为每个电子在板A、B间运动时,电场均匀、恒定,故电子在板A、B间做类平抛运动,在两板之外做匀速直线运动打在屏上.在板A、B间沿水平方向运动时,有L=v1t,竖直方向,有y′=21at2,且a=mdeU联立解得y′=2122mdveUL.ym′=21202mdvLeU<2d,U0<2122LUd.(3)要保持一个完整波形,需每隔周期T回到初始位置,设某个电子运动轨迹如图所示,tanθ=LymdveULvv211,又知y′=2122mdveUL,联立得L′=2L.由相似三角形的性质,得yyLDL2/2,则y=14)2(dULUDL,峰值为ym=104)2(dULUDL.波形长度为x1=vT.波形如图所示.