22.1.4二次函数y=ax2+bx+c的图象和性质第二十二章二次函数导入新课讲授新课当堂练习课堂小结第2课时用待定系数法求二次函数的解析式学习目标1.会用待定系数法求二次函数的表达式.(难点)2.会根据待定系数法解决关于二次函数的相关问题.(重点)导入新课复习引入1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?2.求一次函数表达式的方法是什么?它的一般步骤是什么?2个2个待定系数法(1)设:(表达式)(2)代:(坐标代入)(3)解:方程(组)(4)还原:(写表达式)一般式法二次函数的表达式一探究归纳问题1(1)二次函数y=ax2+bx+c(a≠0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?3个3个(2)下面是我们用描点法画二次函数的图象所列表格的一部分:x-3-2-1012y010-3-8-15讲授新课解:设这个二次函数的表达式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得①选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式.9a-3b+c=0,a-b+c=0,c=-3,解得a=-1,b=-4,c=-3.∴所求的二次函数的表达式是y=-x2-4x-3.待定系数法步骤:1.设:(表达式)2.代:(坐标代入)3.解:方程(组)4.还原:(写解析式)这种已知三点求二次函数表达式的方法叫做一般式法.其步骤是:①设函数表达式为y=ax2+bx+c;②代入后得到一个三元一次方程组;③解方程组得到a,b,c的值;④把待定系数用数字换掉,写出函数表达式.归纳总结一般式法求二次函数表达式的方法例1一个二次函数的图象经过(0,1)、(2,4)、(3,10)三点,求这个二次函数的表达式.解:设这个二次函数的表达式是y=ax2+bx+c,由于这个函数经过点(0,1),可得c=1.又由于其图象经过(2,4)、(3,10)两点,可得4a+2b+1=4,9a+3b+1=10,解这个方程组,得3,2a3.2b∴所求的二次函数的表达式是2331.22yxx顶点法求二次函数的表达式二选取顶点(-2,1)和点(1,-8),试求出这个二次函数的表达式.解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k得y=a(x+2)2+1,再把点(1,-8)代入上式得a(1+2)2+1=-8,解得a=-1.∴所求的二次函数的表达式是y=-(x+2)2+1或y=-x2-4x-3.归纳总结顶点法求二次函数的方法这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是:①设函数表达式是y=a(x-h)2+k;②先代入顶点坐标,得到关于a的一元一次方程;③将另一点的坐标代入原方程求出a值;④a用数值换掉,写出函数表达式.例2一个二次函数的图象经点(0,1),它的顶点坐标为(8,9),求这个二次函数的表达式.解:因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为y=a(x-8)2+9.又由于它的图象经过点(0,1),可得0=a(0-8)2+9.解得9.64a∴所求的二次函数的解析式是29(8)9.64yx解:∵(-3,0)(-1,0)是抛物线y=ax2+bx+c与x轴的交点.所以可设这个二次函数的表达式是y=a(x-x1)(x-x2).(其中x1、x2为交点的横坐标.因此得y=a(x+3)(x+1).再把点(0,-3)代入上式得∴a(0+3)(0+1)=-3,解得a=-1,∴所求的二次函数的表达式是y=-(x+3)(x+1),即y=-x2-4x-3.选取(-3,0),(-1,0),(0,-3),试出这个二次函数的表达式.交点法求二次函数的表达式三xyO12-1-2-3-4-1-2-3-4-512归纳总结交点法求二次函数表达式的方法这种知道抛物线与x轴的交点,求表达式的方法叫做交点法.其步骤是:①设函数表达式是y=a(x-x1)(x-x2);②先把两交点的横坐标x1,x2代入到表达式中,得到关于a的一元一次方程;③将方程的解代入原方程求出a值;④a用数值换掉,写出函数表达式.想一想确定二次函数的这三点应满足什么条件?任意三点不在同一直线上(其中两点的连线可平行于x轴,但不可以平行于y轴.特殊条件的二次函数的表达式四例3.已知二次函数y=ax2+c的图象经过点(2,3)和(-1,-3),求这个二次函数的表达式.解:∵该图象经过点(2,3)和(-1,-3),3=4a+c,-3=a+c,∴所求二次函数表达式为y=2x2-5.∴{a=2,c=-5.解得{关于y轴对称已知二次函数y=ax2+bx的图象经过点(-2,8)和(-1,5),求这个二次函数的表达式.解:∵该图象经过点(-2,8)和(-1,5),做一做图象经过原点8=4a-2b,5=a-b,∴{解得a=-1,b=-6.∴y=-x2-6x.当堂练习1.如图,平面直角坐标系中,函数图象的表达式应是.234yx=注y=ax2与y=ax2+k、y=a(x-h)2、y=a(x-h)2+k一样都是顶点式,只不过前三者是顶点式的特殊形式.注意xyO12-1-2-3-4321-13452.过点(2,4),且当x=1时,y有最值为6,则其表达式是.顶点坐标是(1,6)y=-2(x-1)2+63.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的表达式.解:设这个二次函数的表达式为y=ax2+bx+c.依题意得∴这个二次函数的表达式为y=2x2+3x-4.a+b+c=1,c=-4,a-b+c=-5,解得b=3,c=-4,a=2,4.已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的表达式.解:因为点A(-1,0),B(1,0)是图象与x轴的交点,所以设二次函数的表达式为y=a(x+1)(x-1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a=-1,所以所求抛物线的表达式为y=-(x+1)(x-1),即y=-x2+1.5.如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:(1)求抛物线的表达式;解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,c-4b=-19.∵对称轴是x=-3,∴=-3,∴b=6,∴c=5,∴抛物线的表达式是y=x2+6x+5;2b(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=×8×7=28.12课堂小结①已知三点坐标②已知顶点坐标或对称轴或最值③已知抛物线与x轴的两个交点已知条件所选方法用一般式法:y=ax2+bx+c用顶点法:y=a(x-h)2+k用交点法:y=a(x-x1)(x-x2)(x1,x2为交点的横坐标)待定系数法求二次函数解析式见《学练优》本课时练习课后作业