1第四章不定积分(A)1、求下列不定积分1)2xdx2)xxdx23)dxx2)2(4)dxxx2215)dxxxx325326)dxxxx22sincos2cos7)dxxex)32(8)dxxxx)11(22、求下列不定积分(第一换元法)1)dxx3)23(2)332xdx3)dtttsin4))ln(lnlnxxxdx25)xxdxsincos6)xxeedx7)dxxx)cos(28)dxxx43139)dxxx3cossin10)dxxx249111)122xdx12)dxx3cos13)xdxx3cos2sin14)xdxxsectan315)dxxx23916)dxxx22sin4cos3117)dxxx2arccos211018)dxxxx)1(arctan33、求下列不定积分(第二换元法)1)dxxx2112)dxxsin3)dxxx424))0(,222adxxax5)32)1(xdx6)xdx217)21xxdx8)211xdx4、求下列不定积分(分部积分法)1)inxdxxs2)xdxarcsin3)xdxxln24)dxxex2sin245)xdxxarctan26)xdxxcos27)xdx2ln8)dxxx2cos225、求下列不定积分(有理函数积分)1)dxxx332)dxxxx1033223))1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。2、已知一个函数)(xF的导函数为211x,且当1x时函数值为23,试求此函数。53、证明:若cxFdxxf)()(,则)0(,)(1)(acbaxFadxbaxf。4、设)(xf的一个原函数为xxsin,求dxxfx)(。5、求下列不定积分1)dxx2cos22)dxx2sin13)dxxx211arctan4)dxxxx115)))((2222bxaxdx6)dxxaxx267)dxxxxln1ln8)dxxxex232arctan)1((C)1、求以下积分1)dxexexx12)xxdxsin2)2sin(3)dxeexx2arctan4)dxxx43515)dxxxx1856)dxxxxxcossincossin第四章不定积分习题答案(A)71、(1)cx1(2)cx2332(3)cxxx423123(4)cxxarctan(5)cxx3ln2ln)32(52(6)cxx)tan(cot(7)cxexln32(8)cxx427)7(42、(1)cx4)23(81(2)cx32)32(21(3)ctcos2(4)cxlnlnln(5)cxtanln(6)cexarctan(7)cx)sin(212(8)cx41ln43(9)cx2cos21(10)cxx2494132arcsin21(11)cxx1212ln221(12)cxx3sinsin3(13)cxx5cos101cos21(14)cxxsecsec313(15)cxx)9ln(292122(16)c32arctan321(17)cx10ln210arccos2(18)cx2)(arctan3、(1)cttcotcscln(2)cxxx)sincos(2(3)cxx)2arccos24(tan22(4)cxaaxaxa)(arcsin22222(5)cxx21(6)cxx)21ln(28(7)cxxx)1ln(arcsin212(8)cxxx211arcsin4、(1)cxxxsincos(2)cxxx21arcsin(3)cxxx3391ln31(4)cxxex)2sin42(cos1722(5)cxxxx)1ln(6161arctan31223(6)cxxxxxsin2cos2sin2(7)cxxxxx2ln2ln2(8)cxxxxxxsincossin2161235、(1)cxxxx3ln279233123(2)cxx5ln2ln(3)cxx)1ln(21ln2(4)cxxxxarctan21)1ln(411ln21ln2(5)cxxxx312arctan3311ln2122(B)1、设曲线)(xfy,由导数的几何意义:xy1,cxdxxln1,点)3,(2e代入即可。2、设函数为)(xF,由211)()(xxfxF,得CxdxxfxFarcsin)()(,代入)23,1(即可解出C。3、由假设得)()(),()(baxfbaxFxfxF,故cbaxFadxbaxfbaxFbaxFa)(1)(),(])(1[。4、把)(xf凑微分后用分部积分法。5、(1)用倍角公式:2cos12cos2xx(2)注意0sincosxx或0sincosxx两种情况。(3)利用)cot(11,cot1arctan2xarcddxxxarcx。(4)先分子有理化,在分开作三角代换。9(5)化为部分分式之和后积分。(6)可令tax2sin2。(7)可令,sin)(2tabax则tabxb2cos)(。(8)令txln1。(9)分部积分后移项,整理。(10)凑xearctan后分部积分,再移项,整理。(11)令tx2tan。(12)变形为4)2(23xxxdx后,令txx23,再由2211tx,两端微分得tdtdxx2)2(12。(C)1)解:令1xeu,则duuudxux2212),1ln(所以原式duuuuuduu222214)1ln(2)1ln(2cuuuuarctan44)1ln(22ceeexxxx1arctan414122)解:方法一:原式2cos2tan)2(tan412cos2sin)2(41)cos1(sin223xxxdxxxdxxdxcxxxdxx2tanln412tan81)2(tan2tan2tan14122方法二:令tx2tan方法三:变形为)cos1)(cos1(2sin2xxxdx,然后令uxcos10再化成部分分式积分。3)解:原式)(arctan212xxede])1()(arctan[21222xxxxxeeedee(令uex)])1(arctan[21222uudueexx]1arctan[21222uduudueexxceeeexxxxarctanarctan2124)解:原式)](11)(11[31)(13134334333433xdxxdxxxdxx)]1()1()1()1([3134133433xdxxdxcxx433473)1(94)1(2145)解:原式2)()(2122222443xxxxddxxxxx,令22xxucuuudu22ln2412212cxxxx1212ln24124246)解:原式dxxxxxcossin11cossin221dxxxdxxxxxcossin121cossin)cos(sin212)4sin()4(221)cos(sin21xxdxx11)4(cos1)4cos(221)cos(sin212xxdxx)4cos(])4cos(11)4cos(11[241)cos(sin21xdxxxxcxxxx)4cos(1)4cos(1ln241)cos(sin21