船舶静力学作业题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1-1某海洋客船船长L=155m,船宽B=18.0m,吃水d=7.1m,排水体积▽=10900m3,中横剖面面积AM=115m2,水线面面积AW=1980m2,试求:(1)方形系数CB;(2)纵向菱形系数CP;(3)水线面系数CWP;(4)中横剖面系数CM;(5)垂向菱形系数CVP。解:(1)550.01.7*0.18*15510900dBLCB(2)612.0155*11510900LACMP(3)710.0155*0.181980LBACWWP(4)900.01.7*0.18115dBACMM(5)775.01.7*198010900dACWVP1-3某海洋客货轮排水体积▽=9750m3,主尺度比为:长宽比L/B=8.0,宽度吃水比B/d=2.63,船型系数为:CM=0.900,CP=0.660,CVP=0.780,试求:(1)船长L;(2)船宽B;(3)吃水d;(4)水线面系数CWP;(5)方形系数CB;(6)水线面面积AW。解:CB=CP*CM=0.660*0.900=0.594762.0780.0594.0VPBWPCCCdBLCB又因为所以:B=17.54mL=8.0B=140.32md=B/2.63=6.67m762.0WPCL=8.0Bd=63.2BCB=0.59406.187467.6*780.09750dCAVPWm21-10设一艘船的某一水线方程为:225.012LxBy其中:船长L=60m,船宽B=8.4m,利用下列各种方法计算水线面积:(1)梯形法(10等分);(2)辛氏法(10等分)(3)定积分,并以定积分计算数值为标准,求出其他两种方法的相对误差。解:225.012LxBy中的“+”表示左舷半宽值,“-”表示右舷半宽值。因此船首尾部对称,故可只画出左舷首部的1/4水线面进行计算。则:90012.42xy,将左舷首部分为10等分,则l=30/10=3.0m。站号012345678910x(m)03.06.09.012.015.018.021.024.027.030.0y(m)4.204.1584.0323.8223.5283.1502.6882.1421.5120.7980辛氏系数14242424241面积系数4.2016.6328.06415.2887.05612.605.3768.5683.0243.1920梯形法:总和∑yi=30.03,修正值(y0+y10)/2=2.10,修正后∑`=27.93辛氏法:面积函数总和∑=84.00解:(1)梯形法(10等分)100100124iiyyylA=4*3.0*(30.03-2.10)=12.0*27.93=335.16m2(2)辛氏法(10等分)2100200.33600.84*30.3*434myklAiii(3)定积分计算2300300200.33690012.444mdxxydxA各计算方法的相对误差:梯形法:%25.00025.000.33600.33616.3351AAA辛氏法:%0000.33600.33600.3362AAA2`2204.5601.14*0.2*22mdA2-13某船由淡水进入海水,必须增加载荷P=175t,才能使其在海水中的吃水和淡水中的吃水相等。求增加载重后的排水量。解:∴海淡淡淡PtP00.7000000.1025.1175*000.1淡海淡淡∴△海=△淡+P=7000.00+175.00=7175.00t另解:水的密度变化引起的吃水的变化为ddTPCd100增加载荷P引起的吃水的变化为TPCPd100`d则TPCP100dTPC100=0解得tP00.7000025.000.1*00.175d∴△海=△淡+P=7000.00+175.00=7175.00t2-15某内河客货船的尺度和要素如下:吃水d=2.40m,方形系数CB=0.654,水线面系数CWP=0.785,假定卸下货物重量P=8%排水量。求船舶的平均吃水(设在吃水变化范围内船舷是垂直的)。解:∵在吃水变化范围内船舷是垂直的∴在该范围内水线面面积AW是常数。100100BLCATPCWPW10081008dBLCPBmCdCTPCPdWPB16.0785.0*10040.2*654.0*81008100∴mdddM24.216.040.23-3某巡洋舰的排水量△=10200t,船长L=200m,当尾倾为1.3m时,水线面面积的纵向惯性矩IL=420*104m4,重心的纵向坐标xG=-4.23m,浮心的纵向坐标xB=-4.25m,水的重量密度3/025.1mt。试求纵稳性高LGM。解:mIIBMLLL06.422025.11020010*42040065.02003.1sinLttgxBxGmxxBGGB08.30065.023.425.4sinmBGBMGMLL98.41808.306.422答:该船的纵稳性高LGM=418.98m。3-13某船长L=100m,首吃水dF=4.2m,尾吃水dA=4.8m,每厘米吃水吨数TPC=80t/cm,每厘米纵倾力矩MTC=75tm,漂心纵向坐标xF=4.0m。今在船上装载120t的货物。问货物装在何处才能使船的首吃水和尾吃水相等。解:按题意要求最终的首尾吃水应相等,即AFdd设货物应装在(x,y,z)处,则装货后首尾吃水应满足:AAFFdddddd,即AAFFdddd(1)tgxLdtgxLdFAFF22(2)LFGMxxPtg(3)LGMMTCL100MTCLGML100(4)将式(2)、(3)、(4)代入式(1)中得:MTCLxxPxLdMTCLxxPxLdFFAFFF10021002代入数值得:75*100*1000.4*1200.420.1008.475*100*1000.4*1200.420.1002.4xx解得:x=41.5m答:应将货物放在(41.5,0,z)处。3-14已知某长方形船的船长L=100m,船宽B=12m,吃水d=6m,重心垂向坐标zG=3.6m,该船的中纵剖面两边各有一淡水舱,其尺度为:长l=10m,宽b=6m,深a=4m。在初始状态两舱都装满了淡水。试求:(1)在一个舱内的水耗去一半时船的横倾角;(2)如果消去横倾,那们船上x=8m,y=-4m处的60t货物应移至何处?解:本题为卸载荷,设该船为内河船。预备数据:tdBL0.72000.6*0.12*0.100*0.1mdzB0.320.62mdBdBLBLIBMx0.20.6*120.1212121223mzBMzGMGB4.16.30.20.3水耗去半舱的重量:tbalP1200.1*0.6*0.4*0.10*212111%101P,∴为小量载荷装卸。maaazPg0.30.4*43434111的重心高度:mbyPg0.320.6211的重心横坐标:mBLPd1.00.12*0.100*0.10.1201平均吃水的变化:GMzddPPGMMGMGPg111111112:后的卸去4.10.321.00.60.1200.72000.1204.1m374.1自由液面要素:4330.180120.6*0.1012mlbixmPiGMx025.00.1200.72000.180*0.111mGMMGMGMG349.1025.0374.1111111:新的(1)假设右舷舱的淡水耗去一半:0377.0349.1*0.1200.72000.3*0.12011111MGPyPtgg16.2(左倾)假设左舷舱的淡水耗去一半:0377.0349.1*0.1200.72000.3*0.12011111MGPyPtgg16.2(右倾)(2)假设右舷舱的淡水耗去一半,myg0.31,则P应移到y2处,使船横倾1角:1tgtg即:111211111MGPyyPMGPyPg,yyPyPg211mPyPPyyg0.20.600.3*0.1204*0.60112(向右舷移)假设左舷舱的淡水耗去一半,myg0.31,则:mPyPPyyg0.100.600.3(*)0.1204*0.60112(向左舷移)因本船B=12.0m,y=-4.0m,故将P向左舷移到-10.0m不成立。答:(1)16.2(左倾)或16.2(右倾)(2)应将P向右舷移动到y=2.0m处。3-15已知某内河船的主要尺度和要素为:船长L=58m,船宽B=9.6m,首吃水dF=1.0m,尾吃水dA=1.3m,方形系数CB=0.72,纵稳性高mGML65,为了通过浅水航道,必须移动船内的某些货物,使船处于平浮状态,假定货物从尾至首最大的移动距离为l=28.0m,求必须移动的货物重量。解:设需移动的货物重量为P。由题意知原始状态:AFddt,mdddAFM15.123.10.12tdBLCMB0.46115.1*6.9*0.58*72.0*0.1为使船处于平浮状态,则应使船产生相反的纵倾值-t:LGMPlLttg即0.65*0.4610.28*0.583.10.1P解得:P=5.54t答:需移动的重量P=5.54t。4-1某船正浮时浮心垂向坐标zB0=2.9m,重心垂向坐标zG=4.5m,横倾角Φ=40°时的浮心横向、垂向坐标分别为yB40=1.75m和zB40=3.2m,求此时的静稳性臂l40。解:40sin40sin40cos00404040BGBBBzzzzyl=1.75*0.766+(3.20-2.90)*0.643-(4.50-2.90)*0.643=0.505m答:此时该船的静稳性臂l40=0.505m4-6一艘排水量△=1000t的干货船之静稳性曲线值如下:Φ(°)0153045607590l(m)00.2750.5150.4950.3300.120-0.100求:(1)Φ=55°时的动稳性臂;(2)当船的重心升高0.25m后损失的稳性范围。解:(1)0ldld15131.02152Φ(°)l(m)成对和自上至下和∑2dl00000150.2750.2750.2750.036300.5150.7901.0650.140450.4951.0102.0750.272600.3300.8252.9000.380750.1200.4503.3500.43990-0.1000.0203.3700.441抛物线内插求得mld348.055(2)sin1GGllmGG25.01Φ(°)1GGsin1GGsinll00.250000150.250.2590.0650.2750.210300.250.5000.1250.5150.390450.250.7070.1770.4950.318600.250.8660.21

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功