功和能经典例题一、知识点击1.功、功率和动能定理⑴功功是力对空间的积累效应.如果一个恒力F作用在一个物体上,物体发生的位移是s,那么力F在这段位移上做的功为W=Fscosθ在不使用积分的前提下,我们一般只能计算恒力做的功.但有时利用一些技巧也能求得一些变力做的功.⑵功率:作用在物体上的力在单位时间内所做的功.平均功率:WPt瞬时功率:coslimlimcosWFsPFtt⑶动能定理①质点动能定理:222101122KtKKWFsmmEEE外外②质点系动能定理:若质点系由n个质点组成,质点系内任何一个质点都会受到来自于系统以外的作用力(外力)和系统内其他质点对它的作用力(内力),在质点运动时这些力都将做功.2201122iitiiiiWWmm外内即0KtKKWWEEE系外系内2.虚功原理:许多平衡状态的问题,可以假设其状态发生了一个微小的变化,某一力做了一个微小的功△W,使系统的势能发生了一个微小的变化ΔE,然后即可由ΔW=△E求出我们所需要的量,这就是虚功原理.3.功能原理与机械能守恒⑴功能原理:物体系在外力和内力(包括保守内力和非保守内力)作用下,由一个状态变到另一个状态时,物体系机械能的增量等于外力和非保守内力做功之和.因为保守力的功等于初末势能之差,即0PPtPWEEE保KPWWE外非保内(E+E)=⑵机械能守恒:当质点系满足:0WW外非保内,则ΔE=0即EK+EP=EK0+EP0=常量机械能守恒定律:在只有保守力做功的条件下,系统的动能和势能可以相互转化,但其总量保持不变.说明:机械能守恒定律只适用于同一惯性系.在非惯性系中,由于惯性力可能做功,即使满足守恒条件,机械能也不一定守恒.对某一惯性系W外=0,而对另一惯性系W外≠0,机械能守恒与参考系的选择有关。4.刚体定轴转动的功能原理若刚体处于重力场中,则:M外=M其外+MG(M其外表示除重力力矩MG以外的其他外力矩)W=W其外+WG=(M其外+MG)θ=EKr而21GPPPWE(E-E)22112PKrCMEEmghJ其外()即为重力场中刚体定轴转动的功能原理.若呱0M其外,即M其外=0,则:212CmghJ=常量刚体机械能守恒.二、方法演练类型一、动力学中有些问题由于是做非匀变速运动,用牛顿运动定律无法直接求解,用动能定理,计算细杆对小环做的功也比较困难,因此有时在受力分析时必须引入一个惯性力,这样就可以使问题简化很多。例1.如图4—2所示,一光滑细杆绕竖直轴以匀角速度ω转动,细杆与竖直轴夹角保持不变,一个相对细杆静止的小环自离地面h高处沿细杆下滑.求小球滑到细杆下端时的速度.分析和解:本题中由于小环所需向心力不断减小,因此小环不是做匀变速运动,用牛顿运动定律无法直接求解,用动能定理,计算细杆对小环做的功也比较困难,因此我们选择细杆做参考系,分析小环受力时必须加上一个惯性力,小环在旋转的非惯性系中,虽然有径向运动,受到科里奥利力的作用,但小环在切向无位移,科里奥利力不做功.惯性离心力2fmr,随半径r的减小f均匀减小,所以小环由半径r0处移到下端r=0处,惯性离心力对r的平均值为202mrF惯性离心力做的功:222101tan2WFrmh重力做功为:W2=mgh,由动能定理得222211(tan)22mghmhm2222tanghh类型二、在功能关系的问题中有些也牵涉到速度关联的问题,在解题中必须注意到它们之间的约束条件,找出有关速度关系,才能准确利用功能原理即可求解.例2.如图4—3所示,一根长为l的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为ma和mb.杆可绕距a球为14l处的水平定轴O在竖直平面内转动.初始时杆处于竖直位置,小球b几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过角时小球b速度的大小,设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦.解析:如图4—4所示,用b表示a转过。角时b球速度的大小,表示此时立方体速度的大小,则有cosb由于b与正立方体的接触是光滑的,相互作用力总是沿水平方向,而且两者在水平方向的位移相同,因此相互作用的作用力和反作用力做功大小相同,符号相反,做功的总和为0.因此在整个过程中推力F所做的功应等于球a、b和正立方体机械能的增量.现用a表示此时a球速度的大小,因为a、b角速度相同,14Oal,034Obl,所以得13ab根据功能原理可知22211331sin(cos)(cos)42442442aaabbblllllFmmgmmgm将①、②式代人③可得22211331sin()(cos)(cos)(cos)42442442ababbbblllllFmmgmmgm解得29sin(3)(1cos)21818cosabbablFmmgmmm类型三、一些平衡状态的问题,用平衡条件很难或无法求解,这时可以假设其状态发生了一个微小的变化,就可以设想某一力做了一个微小的功△W,然后用虚功原理就可以很简单地解答出问题.例3.如图4—5所示,一轻质三足支架每边长度均为l,每边与竖直线成同一角度θ,三足置于一光滑水平面上,且恒成一正三角形.现用一绳圈套在三足支架的三足上,使其不能改变与竖直线间的夹角,设三足支架负重为G,试求绳中张力FT.分析和解:在本题这可以取与原平衡状态逼近的另一平衡态,从而虚设了一个元过程,此过程中所有元功之和为零,以此为基本关系列出方程,通过极限处理,从而求得最后结果.分析支架受力:由于负重受到重力G,支架的每边足部同时受到两侧绳的拉力FT,易得其合力为3TF,方向指向三足构成的正三角形的几何中心,支架三边足部受水平地面支持力FN,此力方向竖直向上。现设想支架各边足底在3TF力作用下向正三角形中心移动一极小位移x,因而支架的高度升高了y,则在此虚拟的微动讨程中,3TF力有一元功.FN力不做功.负重重力势能增大.对系统用功能原理得33TFxGy上式中,支架升高y与x关系如图4—6,图中支架一边位置从ab变为a'b',作b'b⊥ab,aa⊥a'b',由于x很小,ab边转过的角度△θ也很小,故可认为ab'=ab,且a'b'边与竖直方向夹角为θ,则有sincosxy,即tanyx于是可得33tanTFxGx,即tan33TGF。类型四、能量守恒的问题往往牵涉到摩擦力做功和碰撞,摩擦力做功要消耗机械能,而碰撞可以造成多过程,两者结合起来就很容易在物理学中出现一些数列问题,因此在解题中如何通过能量关系的计算得出有关的通式是解决这类问题的关键。例4.一固定的斜面,如图4—7所示,倾角θ=450,斜面长L=2.00m.在斜面下端有一与斜面垂直挡板,一质量为m的质点,从斜面的最高点沿斜面下滑,初速度为零.质点沿斜面到斜面最低端与挡板发生弹性碰撞.已知质点与斜面间的滑动摩擦因数μ=0.20.试求此质点从开始运动到与挡板发生第11次碰撞的过程中运动的总路程.分析和解:在本题中由于质点与挡板发生弹性碰撞,故机械能消耗在摩擦力做功上,因此只要求出下滑和上滑一个来回通过的路程的通式,就可用数列的方法求解了。质点在沿斜面滑动的过程中,受到摩擦力f的大小为cosfmg若质点从斜面最高点第一次到达斜面最低端时的速度为1,则有211sincos2mmgLmgL①质点与斜面挡板发生弹性碰撞后,以速度1开始沿斜面上滑.若上滑的最大路程为Ll,则有21111sincos2mmgLmgL②由①、②两式得11sincossincosmgLmgLmgLmgL即1sincossincosLmgmgLmgmg令上式等号右边的数值等于a,并以θ=450,μ=0.20代入,则得1LaL,10.20210.203a按同样的推理可知质点在第2次碰撞后上滑的距离为221LaLaL依此类推,可知在第10次碰撞后上滑的距离为:1010LaL第1次碰撞前质点运动的路程为:1SL第2次碰撞前质点运动的总路程为:2122SLLLaL依此类推,可知在第11次碰撞前,即从开始到发生第11次碰撞期间,质点运动的总路程为:21010222SLaLaLaL上式等号右边的数值,可根据数学上等比级数求和的公式算出,即10101(12)1aSLaa,故S10=9.86m.类型五、机械能守恒的问题往往还可以与刚体的约束条件的问题结合在一切,解决这类问题时一方面要考虑到约束面的约束反力,另一方面又要考虑约束反力是否做功,如果不做功,可重点考虑系统的质心变化和能量的关系,以及约束各点的速度关联。例5.如图4—8所示,质量为m的钢球下连一根可不计质量的轻杆,杆长为L,杆原来直立在光滑的水平面上,轻推一下后,问:(1)小球下落的轨迹是什么?(2)球在离地L/2处,杆着地点的速度为多少?分析和解:(1)由球和杆组成的系统,因杆的质量可以忽略.所以系统的质心在球心.又因水平面光滑,该系统所受的外力有重力mg、水平面的约束反力(即支持力)N均沿竖直方向,故有0eixiF,且由于t=0时,0CD,于是有Cx常量即系统的质心—球心将沿着杆原来的直立方向运动,其轨迹为竖直线,如图4一8所示。(2)球(系统)下落过程中,只有重力做功,故机械能守恒.因此当球离地面L/2时,根据机械能守恒定律,有222ymmgL由上式得:ygL又因杆不会伸长或缩短,即杆可视为刚体,所以杆两端的速度沿杆的方向的投影必须相等,根据图4一9可知:sincosyx,是杆与地面的夹角,可算出030.所以3tan3xygL类型六、能量耗损的问题特别要注意的是两种基本的形式:转化和转移。解题时往往出现对某种耗散力的忽视把能量守恒的问题当成机械能守恒的问题来解。例6.在一个倾角为的斜面上镶嵌着许多同样的滚筒,相邻滚筒间的距离为d。滚筒沿水平方向放置,质量为m,半径为r的表面覆盖橡胶的圆柱形铁棍.质量为m、长度远大于d的厚木板在斜面的顶端释放,如图3-43所示.求木板的最终速度max,忽略空气阻力和滚筒转轴处的摩擦力.分析和解:厚木板滑动距离L时,有Ld个滚筒得到角速度maxmaxr.厚木板势能的减少为sinMgL,而每个滚筒的动能为22maxmax1124Im,上述结论考虑了滚筒表面最终的切向速度应该与木板的速度相等,而每个滚筒的转动惯量为212Imr.认为木板下降过程中损失的重力势能,全部转化成为滚筒的动能是不正确的.在此情况下由式2max1sin4LMgLmd①可以得到木板的最终速度为max4sindMgm然而,这个结果是错误的,因为没有考虑滚筒加速过程中由摩擦力作用而导致的热量损失.令单个滚筒与木板之间的摩擦力为F(t)(没有必要假定这个力不随时间变化).在Δt时间间隔内,滚筒角动量的变化为:()IrFtt②把上式的变化对时间取和,从而得出滚筒最终速度的一个方程:maxmax()rFttIIr③另一方面,在时间△t内,克服摩擦力所做的功(热散失)ΔQ为摩擦力与滚筒表面相对位移之积max()()QFtrtt考虑式②、③,总的耗散能量为222maxmaxmaxmaxmax()()()22QFtrttrFttIIII在上式的计算中利用了等式21()2.这个结果表明,摩擦生热损失的能量与滚筒得到的动能相等.需要注意的是,这个结果既不依赖于摩擦力的大小,也不依赖于摩擦