错位相减法(提高篇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数列求和之错位相减法[例1]已知数列{an}的前n项和为Sn,且有a1=2,3Sn=11543(2)nnnaaSn(I)求数列an的通项公式;(Ⅱ)若bn=n·an,求数列{bn}的前n项和Tn。解析:(Ⅰ)113354(2)nnnnSSaan≥,1122nnnnaaaa,,……(3分)又12a,{}22na是以为首项,为公比的等比数列,……………………………(4分)1222nnna.……………………………………………………………………(5分)(Ⅱ)2nnbn,1231222322nnTn,23121222(1)22nnnTnn.…………………………(8分)两式相减得:1212222nnnTn,12(12)212nnnTn1(1)22nn,………………………………………(11分)12(1)2nnTn.…………………………………………………………………(12分)[例2]等比数列{an}的前n项和为Sn.已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=-32,求数列{n·an}的前n项和Tn.解析:(1)由已知得2S3=S1+S2,∴2(a1+a2+a3)=a1+(a1+a2),∴a2+2a3=0,an≠0,∴1+2q=0,∴q=-12.(2)∵a1-a3=a1(1-q2)=a1(1-14)=34a1=-32,∴a1=-2,∴an=(-2)·(-12)n-1=(-12)n-2,∴nan=n(-12)n-2.∴Tn=1·(-12)-1+2·(-12)0+3·(-12)1+…+n·(-12)n-2,①∴-12Tn=1·(-12)0+2·(-12)1+3·(-12)2+…+n·(-12)n-1,②①-②得32Tn=-2+[(-12)0+(-12)1+(-12)2+…+(-12)n-2]-n·(-12)n-1=-43-(-12)n-1(23+n),∴Tn=-89-(-12)n-1(49+23n).[例3]设数列{an}满足a1=2,an+1-an=3·22n-1.(1)求数列{an}的通项公式;(2)令bn=nan,求数列{bn}的前n项和Sn.解析(1)由已知,得当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,符合上式,所以数列{an}的通项公式为an=22n-1.(2)由bn=nan=n·22n-1知Sn=1·2+2·23+3·25+…+n·22n-1.①从而22·Sn=1·23+2·25+3·27+…+n·22n+1.②①-②得(1-22)Sn=2+23+25+…+22n-1-n·22n+1,即Sn=19[(3n-1)22n+1+2].[例4]已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列{an2n-1}的前n项和.解析(1)设等差数列{an}的公差为d.由已知条件可得a1+d=0,2a1+12d=-10,解得a1=1,d=-1.故数列{an}的通项公式为an=2-n.(2)设数列an2n-1的前n项和为Sn,即Sn=a1+a22+…+an2n-1,故S1=1,Sn2=a12+a24+…+an2n.所以,当n1时,Sn2=a1+a2-a12+…+an-an-12n-1-an2n=1-(12+14+…+12n-1)-2-n2n=1-(1-12n-1)-2-n2n=n2n.所以Sn=n2n-1.综上,数列an2n-1的前n项和Sn=n2n-1.[例5](2008,陕西)已知数列{}na的首项123a,121nnnaaa,1,2,3,n….(Ⅰ)证明:数列1{1}na是等比数列;(Ⅱ)数列{}nna的前n项和nS.解析(Ⅰ)121nnnaaa,111111222nnnnaaaa,11111(1)2nnaa,又123a,11112a,数列1{1}na是以为12首项,12为公比的等比数列.(Ⅱ)由(Ⅰ)知111111222nnna,即1112nna,2nnnnna.设23123222nT…2nn,①则23112222nT…1122nnnn,②由①②得2111222nT…11111(1)1122112222212nnnnnnnnn,11222nnnnT.又123…(1)2nnn.数列{}nna的前n项和22(1)4222222nnnnnnnnnS.[例6]在等比数列{an}中,a2a3=32,a5=32.(1)求数列{an}的通项公式;(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn.解析:(1)设等比数列{an}的公比为q,依题意得a1q·a1q2=32,a1q4=32,解得a1=2,q=2,故an=2·2n-1=2n.(2)∵Sn表示数列{an}的前n项和,∴Sn=21-2n1-2=2(2n-1),∴S1+2S2+…+nSn=2[(2+2·22+…+n·2n)-(1+2+…+n)]=2(2+2·22+…+n·2n)-n(n+1),设Tn=2+2·22+…+n·2n,①则2Tn=22+2·23+…+n·2n+1,②①-②,得-Tn=2+22+…+2n-n·2n+1=21-2n1-2-n·2n+1=(1-n)2n+1-2,∴Tn=(n-1)2n+1+2,∴S1+2S2+…+nSn=2[(n-1)2n+1+2]-n(n+1)=(n-1)2n+2+4-n(n+1).[例7]已知各项均为正数的数列na前n项和为nS,首项为1a,且nnSa,,21等差数列.(Ⅰ)求数列na的通项公式;(Ⅱ)若nbna)21(2,设nnnabc,求数列nc的前n项和nT.解析:(1)由题意知0,212nnnaSa………………1分当1n时,21212111aaa当2n时,212,21211nnnnaSaS两式相减得1122nnnnnaaSSa………………3分整理得:21nnaa……………………4分∴数列na是以21为首项,2为公比的等比数列.211122212nnnnaa……………………5分(2)42222nbnna∴nbn24,……………………6分nnnnnnnabC28162242nnnnnT28162824282028132①13228162824202821nnnnnT②①-②得1322816)212121(8421nnnnT………………9分111122816)211442816211)2112184nnnnnn((nn24.………………………………………………………11分.28nnnT…………………………………………………………………12分[例8](14分)已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=anlog12an,Sn=b1+b2+…+bn,求使Sn+n·2n+150成立的最小正整数n的值.解析(1)设此等比数列为a1,a1q,a1q2,a1q3,…,其中a1≠0,q≠0.由题意知:a1q+a1q2+a1q3=28,①a1q+a1q3=2(a1q2+2).②②×7-①得6a1q3-15a1q2+6a1q=0,即2q2-5q+2=0,解得q=2或q=12.∵等比数列{an}单调递增,∴a1=2,q=2,∴an=2n.(2)由(1)得bn=-n·2n,∴Sn=b1+b2+…+bn=-(1×2+2×22+…+n·2n).设Tn=1×2+2×22+…+n·2n,③则2Tn=1×22+2×23+…+n·2n+1.④由③-④,得-Tn=1×2+1×22+…+1·2n-n·2n+1=2n+1-2-n·2n+1=(1-n)·2n+1-2,∴-Tn=-(n-1)·2n+1-2.∴Sn=-(n-1)·2n+1-2.要使Sn+n·2n+150成立,即-(n-1)·2n+1-2+n·2n+150,即2n26.∵24=1626,25=3226,且y=2x是单调递增函数,∴满足条件的n的最小值为5.【跟踪训练】1.已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*).(1)求数列{an}的通项公式an;(2)求数列{bn}的通项公式bn;(3)若cn=an·bnn,求数列{cn}的前n项和Tn.解析:(1)∵Sn=3n,∴Sn-1=3n-1(n≥2),∴an=Sn-Sn-1=3n-3n-1=2×3n-1(n≥2).当n=1时,2×31-1=2≠S1=a1=3,∴an=3,n=1,2×3n-1,n≥2.(2)∵bn+1=bn+(2n-1),∴b2-b1=1,b3-b2=3,b4-b3=5,…,bn-bn-1=2n-3.以上各式相加得bn-b1=1+3+5+…+(2n-3)=n-11+2n-32=(n-1)2.∵b1=-1,∴bn=n2-2n.(3)由题意得cn=-3,n=1,2n-2×3n-1,n≥2.当n≥2时,Tn=-3+2×0×31+2×1×32+2×2×33+…+2(n-2)×3n-1,∴3Tn=-9+2×0×32+2×1×33+2×2×34+…+2(n-2)×3n,∴相减得-2Tn=6+2×32+2×33+…+2×3n-1-2(n-2)×3n.∴Tn=(n-2)×3n-(3+32+33+…+3n-1)=(n-2)×3n-3n-32=2n-53n+32.∴Tn=-3,n=1,2n-53n+32,n≥2.∴Tn=2n-53n+32(n∈N*).2.已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项,第3项,第5项分别是a1,a3,a21.(1)求数列{an}与{bn}的通项公式;(2)求数列{anbn}的前n项和Sn.解析:(1)设数列{an}的公差为d(d≠0),数列{bn}的公比为q,∵由题意得a23=a1a21,∴(1+2d)2=1×(1+20d),即4d2-16d=0,∵d≠0,∴d=4,∴an=4n-3.∴b1=1,b3=9,b5=81,∵{bn}的各项均为正数,∴q=3,∴bn=3n-1.(2)∵由(1)可得anbn=(4n-3)3n-1,∴Sn=30+5×31+9×32+…+(4n-7)×3n-2+(4n-3)×3n-1,3Sn=31+5×32+9×33+…+(4n-7)×3n-1+(4n-3)×3n,两式相减得:-2Sn=1+4×3+4×32+4×33+…+4×3n-1-(4n-3)×3n=1+4(3+32+33+…+3n-1)-(4n-3)×3n=1+4×3×1-3n-11-3-(4n-3)×3n=(5-4n)×3n-5,∴Sn=4n-53n+52.3、已知递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=anlog12an,Sn=b1+b2+…+bn,求Sn.解:(1)设等比数列{an}的首项为a1,公比为q.依题意,有2(a3+2)=a2+a4,代入a2+a3+a4=28,得a3=8.∴a2+a4=20.∴a1q+a1q3=20,a3=a1q2=8,解得q=2,a1=2,或q=12,a1=32

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功