1、(2017黄冈)已知:如图,在⊙O中,0,70OABCAOB,则ADC的度数为()A.30°B.35°C.45°D.70°解:∵OA⊥BC∴⌒BC=⌒AC∵∠AOB=70°∴∠ADC=∠AOB=35°故选:B.2、(2017毕节)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30°B.50°C.60°D.70°解:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.3、如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为⌒ABO上一点(不与O、A两点重合),则cosC的值为()A.43B.53C.34D.54如图,连接AB,∵∠AOB=90°,∴AB为圆的直径,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴cosC=cos∠ABO=54ABOB.故选D.4、(2016南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.5、(2017泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A.7B.27C.6D.8【答案】B.【解析】6、(2017青岛)如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD∵∠AED=20°∴∠ABD=∠AED=20°∵AB是⊙O的直径∴∠ADB=90°∴∠BAD=70°∴∠BCD=110°7、(2017南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为()A.(4,176)B.(4,3)C.(5,176)D.(5,3)解:已知A(2,2),B(6,2),C(4,5),∴AB的垂直平分线是x==4,设直线BC的解析式为y=kx+b,把B(6,2),C(4,5)代入上式得,解得,∴y=﹣x+11,设BC的垂直平分线为y=x+m,把线段BC的中点坐标(5,)代入得m=,∴BC的垂直平分线是y=x+,当x=4时,y=,∴过A、B、C三点的圆的圆心坐标为(4,).故选A.8、(2017贵港)如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.9、如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为()A.33B.43C.53D.63解:连结OC,AC,∵弦DC垂直AB于点E,∠DCB=30°,∴∠ABC=60°,∴△BOC是等边三角形,∵EB=3,∴OB=6,∴AB=12,AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB,AC=12×23=63.故选:D.10、(2017重庆A卷)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.11、(2017西宁)如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=60°.解:∵∠BOD=120°,∴∠A=∠BOD=60°.∵四边形ABCD是圆内接四边形,∴∠DCE=∠A=60°.故答案为:60°.12、(2017甘肃省卷)如图,ABC内接于⊙O,若32OAB,则C.【答案】58.【解析】试题分析:连接OB,则OA=OB,所以∠OBA=∠OAB=32°,所以∠AOB=180°-2×32°=116°,因为∠AOB=2∠C,所以2∠C=116°,所以∠C=58°.13、(2017南京)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB==51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.14、(2017北京)如图,AB为⊙O的直径,CD、为⊙O上的点,ADCD.若040CAB,则CAD.【答案】25°.考点:圆周角定理15、(2017荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是60°或120°.解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.16、(2017台州)如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值(1)证明:∵△ABC是等腰直角三角形,∴∠C=∠ABC=45°,∴∠PEA=∠ABC=45°又∵PE是⊙O的直径,∴∠PAE=90°,∴∠PEA=∠APE=45°,∴△APE是等腰直角三角形.(2)解:∵△ABC是等腰直角三角形,∴AC=AB,同理AP=AE,又∵∠CAB=∠PAE=90°,∴∠CAP=∠BAE,∴△CPA≌△BAE,∴CP=BE,在Rt△BPE中,∠PBE=90°,PE=2,∴PB2+BE2=PE2,∴CP2+PB2=PE2=4.17、(2017广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.2ADOBB.CEEOC.040OCED.2BOCBAD解:∵AB⊥CD,∴⌒BC=⌒BD,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°-40°=50°.故选:D.18、(2017广安)如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=,BD=5,则OH的长度为()A.B.C.1D.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵cos∠CDB==,BD=5,∴DH=4,∴BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;故选:D.19、(2017潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OD,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD,∵CE===2,∴边CD===2,故选D.20、(2017盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.21、(2017海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.22、(2017自贡)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD=4.解:∵AB=AC,∴∠ABC=∠ACB=∠ADB=30°,∵BD是直径,∴∠BAD=90°,∠ABD=60°,∴∠CBD=∠ABD﹣∠ABC=30°,∴∠ABC=∠CBD,∴==,∴=,∴AD=CB,∵∠BCD=90°,∴BC=CD•tan60°=•=4,∴AD=BC=4.故答案为4.23、(2017苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S△ABC=4S△DOE=4S1,∵OA=OB,∴,即S△BOC=2S1,∵,∴,∴,即,∴.