943.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。[重点难点]一元一次方程和方程的解的概念是重点;怎样列方程解决实际问题是难点。[教学过程]一、问题导入含有未知数的等式叫做方程。方程把问题中的未知数与已知数的联系用等式的形式表示出来。研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。怎样根据问题中的数量关系列出方程?怎样解方程?二、怎样列方程问题汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远?地名时间王家庄10:00青山13:00秀水15:001、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间?2、请你用算术方法解决这个问题。3、如果设王家庄到翠湖的路程为x千米,那么王家庄距青山多少千米?王家庄距秀水多少千米?4、由于汽车是匀速行驶,可知各段路程的车速相等。你能据此列出方程吗?列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。列方程的过程可以表示如下:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。三、一元一次方程的概念例1根据下列问题,设未知数并列出方程:(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?50千米70千米王家庄青山翠湖秀水x千米实际问题一元一次方程设未知数,列方程95(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?解:(1)设正方形的边长为x厘米,可列方程4x=24①(2)设x月后这台计算机的使用时间达到规定的检修时间。1700+150x=2450②(3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少?女生人数为0.52x人,男生人数为(1-0.52)x人。0.52x-(1-0.52)x=80③观察方程①②③,它们有什么共同的特点?只含有一个未知数;未知数的次数是1。只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。思考:下列式子中,哪些是一元一次方程?①2x+3;②2×6=12;③1/2x-3=2;④1/x+3x=5;⑤y=0.四、方程的解列方程是解决实际问题的一种方法,利用方程可以解出未知数。想一想:(1)x等于多少时,方程①的左右两边相等?(2)x=5能使②的左右两边相等吗?能使方程左右两边相等的未知数的值,叫做方程的解。思考:x=2是方程3x-1=2x+1的解吗?为什么?五、课堂练习课本82面1、2、3题。六、课堂小结1、怎样列方程?怎样解决实际问题?解决实际问题就是把实际问题抽象成数学问题,通过解决数学问题来解决实际问题.2、什么叫一元一次方程?3、什么是方程的解?你怎样知道某个未知数的值是方程的解?作业:课本84面1、2;85面5、6、10(2)题。七、板书设计:一元一次方程一、提出问题二、一元一次方程的概念三、方程的解四、例题3.1.2等式的性质〔教学目标〕1、了解等式的概念;2、利用天平的经验分析得出等式的性质;3、会利用等式的性质解方程。〔重点难点〕等式的性质和运用是重点;利用天平经验抽象出等式的性质是难点。〔教学过程〕一、问题导入我们知道未知数的某个值是方程的解,但怎样才能知道方程的解是什么呢?方程是含有未知数的等式,我们先来看看等式有什么性质。二、等式及其性质1、等式用等号表示相等关系的式子叫等式。如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。注意:等式中一定含有等号。我们可以用a=b来表示一般的等式。2、等式的性质观察天平的变化,你能发现了什么?+——96在平衡天平的两边都加上(或减去)同样的量,天平还保持平衡。如果把天平看成等式,球和正方体看成数或式,那么你能得到什么结论?等式性质1等式两边加上(或减去)同一个数(或式子),结果仍相等。用字母表示为:如果a=b,那么a±c=b±c观察天平的变化,你能发现了什么?把平衡天平的两边都扩大(或缩小)相同的倍数,天平仍保持平衡。同样地,如果把天平看成等式,球和正方体看成数,那么你能得到什么结论?等式性质2等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。用字母表示为:如果a=b,那么ac=bc;如果a=b,那么a/c=b/c(c≠0)。注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。思考:回答下列问题:(1)从a+b=b+c,能否能到a=c,为什么?(2)从a-b=b-c,能否能到a=c,为什么?(1)从ab=bc,能否能到a=c,为什么?(1)从a/b=c/b,能否能到a=c,为什么?(1)从xy=1,能否能到x=1/y,为什么?三、例题例1利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-1/3x-5=4.分析:解方程的结果就是将方程转化为x=a的形式,为此,解方程就要将未知项移到一边,常数项移到另一边。解:(1)将常数项移到右边,得x=26-7化为x=a的形式,得x=19。(2)化为x=a的形式,得x=20/-5于是x=-4。(3)将常数项移到右边,得-1/3x=4+5即-1/3x=9化为x=a的形式,得x=9×(-3)于是x=-27。四、课堂练习课本84面练习(1)~(4)。×3÷397五、课堂小结1、等式和等式的性质。2、运用等式的性质解方程。作业:课本85面3、4、7、8。六、板书设计:等式的性质一、等式及其性质二、例题三、练习3.2.1解一元一次方程——合并同类项[教学目标]1、会利用合并同类项解一元一次方程;2、通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。[重点难点利用合并同类项解一元一次方程是重点;列一元一次方程解决实际问题是难点。[教学过程]一、问题导入约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《时消与还原》。“对消”与“还原”是什么意思?我们先讨论下面的问题,然后再回答这个问题。二、探索合并同类项解一元一次方程问题某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的2倍。前年这个学校购买了多少台计算机?设前年购买计算机x台。那么去年购买计算机多少台?今年购买计算机多少台?去年购买计算机2x台,今年购买计算机4x台。问题中的相等关系是什么?前年购买量+去年购买量+今年购买量=140台依题意,可得方程x+2x+4x=140这个方程怎么解呢?我们知道,解方程的最终结果是要化为x=a的形式,为此可以作怎样的变形?把左边合并同类项。可得7x=140系数化为1,得x=20所以前年这个学校购买了20台计算机。注意:本题蕴含着一个基本的等量关系,即总量=各部分量的和。思考:上面解方程中“合并同类项”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。三、例题例1解方程7x-2.5x+3x-1.5x=-15×4-6×3解:合并同类项,得6x=-78系数化1,得x=-13注意:如果方程中有同类项,一定要合并同类项。四、课堂练习课本89面(1)~(4);补充题:足球表面是由若干黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?98五、课堂小结1、合并同类项解一元一次方程。通过合并同类项把方程化为ax=b(a≠0,a、b是常数)的形式。从而简化方程2、列一元一次方程解实际问题。(1)找等量关系是关键,也是难点;(2)注意抓住基本等量关系:总量=各部分量的和。作业:93面1;3(1)、(2);4;5。第三章第一阶段复习3.1-3.2.(1)一、双基回顾1、方程、方程的解和解方程含有的叫做方程;使方程相等的的值叫做方程的解。的过程叫做解方程。〔1〕x=-3是不是方程2x=5x+9的解,你是怎么知道的.2、一元一次方程只含有未知数,并且未知项的次数的方程叫做一元一次方程。〔2〕指出下列各式中哪些是一元一次方程?并说明理由。(1)2x-y=3;(2)x=0;(3)x2-2x+1=0;(4)x+3=2x-1.3、等式的性质性质1等式两边同一个数(或),结果仍相等。若a=b,则.性质2等式两边同一个数,或的数,结果仍相等。若a=b,则;若a=b,则.〔3用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。(1)如果3x+8=6,那么3x=6[];(2)如果-5x=25,那么x=[];(3)如果2x-3=5,那么2x=[];(4)如果x/4=-7,那么x=[]4、合并同类项解一元一次方程如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。〔4〕解方程:-3x+2x=5-1二、例题导引例1下列说法中正确的是〔〕①若x=y,则x/m2=y/m2;②若x=y,则mx=my;③若x/m=y/m,则x=y;④若x2=y2,则x3=y3例2已知方程(m-2)x︱m︱-1+3=m-5是关于x的一元一次方程,求m的值。例3已知x=1/2是关于x的方程4+x=3-2ax的解,求a2+a+1的值。例4小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。)三、练习提高夯实基础991、下列各式中,是方程的有〔〕①2x+1;②x=0;③2x+3>0;④x-2y=3;⑤1/x-3x=5;⑥x2+x-3=0.A、3个B、4个C、5个D、6个2、下列方程中,解为1/2的是〔〕A、5(t-1)+2=t-2B、1/2x-1=0C、3y-2=4(y-1)D、3(z-1)=z-23、下列变形不正确的是〔〕A、若2x-1=3,则2x=4B、若3x=-6,则x=2C、若x+3=2,则x=-1D、若-1/2x=3,则x=-64、已x=y,下列变形中不一定正确的是〔〕A、x-2=y-2B、-2x=-2yC、ax=ayD、x/c2=y/c25、下列各式的合并不正确的是〔〕A、-x-x=-2xB、-3x+2x=-xC、1/10x-0.1x=0D、0.1x-0.9x=0.8x6、若x2a-1+2=0是一元一次方程,则a=.7、某班学生为希望工程捐款131元,比每人平均2元还多35元。设这个班的学生有x人,根据题意列方程为.8、将等式3a-2b=2a-2b变形,过程如下:因为3a-2b=2a-2b,所以3a=2a所以3=2是述过程中,第一步的依据是,第二步得出错误结论,其原因是.9、解下列方程:(1)6x-5x=-5(2)-1/2x+3/2x=4(3)2/3y-y=-3+1(4)2x-7x=19+3110、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?设前年购买了计算机x台,可以表示出:去年购买计算机台,今年购买计算机台。根据问题中的相等关系:前年购买量+去年购买量+今年购买量=140台,列得方程.解这个方程。11、从30㎝长的木条上零截出两段长度相等的木条后,还剩6㎝长的木条,求截去的每一段木条的长是多少?3.2.2解一元一次方程——移项(2)[教学目标]1、理解移项的概念;2、会用移项法解一元一次方程;3、经历用方程解决实际问题的过程。[重点难点]用移项法解方程是重点;移项是难点。[教学过程]一、问题导入一元一次方程有这样的特点:一边是含有未知数的项,一边是常数项。这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?100二、移项的概念问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺2