stata回归结果详解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

stata回归结果详解付畅俭湘潭大学商学院数据来源于贾俊平《统计学》(第7版),第12章多元线性回归noyx1x2x3x410.967.36.8551.921.1111.319.81690.934.81737.71773.743.280.87.21014.557.8199.716.51963.262.716.22.212.271.6107.410.71720.2812.5185.427.11843.89196.11.71055.9102.672.89.11464.3110.364.22.11142.7124132.211.22376.7130.858.661422.8143.5174.612.726117.11510.2263.515.634146.716379.38.91529.9170.214.80.6242.1180.473.55.91125.319124.75413.4206.8139.47.22864.32111.6368.216.832163.9221.695.73.81044.5231.2109.610.31467.9247.2196.215.81639.7253.2102.2121097.1第二列SS对应的是误差平方和,或称变差。1.第一行为回归平方和或回归变差SSR,表示因变量的预测值对其平均值的总偏差。2.第二行为剩余平方和(也称残差平方和或剩余变差)SSE,是因变量对其预测值的总偏差,这个数值越大,拟合效果越差,y的标准误差即由SSE给出。3.第三行为总平方和或总变差SST,表示因变量对其平均值的总偏差。4.容易验证249.37+63.28=312.65213.SST()312.65niiyy2211ˆˆˆ1.SSR()()249.37nniiiiyyyy21ˆ2.SSE()63.28niiiyy4.SSRSSESST第三列df是自由度(degreeoffreedom),第一行是回归自由度dfr,等于变量数目,即dfr=m;第二行为残差自由度dfe,等于样本数目减去变量数目再减1,即有dfe=n-m-1;第三行为总自由度dft,等于样本数目减1,即有dft=n-1。对于本例,m=4,n=10,因此,dfr=4,dfe=n-m-1=20,dft=n-1=24。第四列MS是均方差,误差平方和除以相应的自由度1.第一行为回归均方差MSR2.第二行为剩余均方差MSE,数值越小拟合效果越好SSR249.371.MSR62.34dfr4SSE63.282.MSE3.16dfe201.方差分析F值,用于线性关系的判定。结合P值对线性关系的显著性进行判断,即弃真概率。所谓“弃真概率”即模型为假的概率,显然1-P便是模型为真的概率,P值越小越好。对于本例,P=0.00000.0001,故置信度达到99.99%以上。62.3428(4,20)19.703.1640MSRFMSE222SSR249.370.7976SST63.28/(1)(1)24(10.7976)1110.7571/120aRSSEdfenRRSSTdftnmR-Squared为判定系数(determinationcoefficient),或称拟合优度(goodnessoffit),它是相关系数的平方,也是SSR/SST,y的总偏差中自变量解释的部分。Adjusted对应的是校正的判定系数RootMSE为标准误差(standarderror),数值越小,拟合的效果越好RootMSE3.16401.7788MSE2.模型显著性回归系数22ˆvar()*,(1)MSEjjjjjjjxjxjjjMSEMSEVIFRxSSTRSSTxVIF回归系数的标准误差为对其它自变量进行回归的判决系数即,方差为除以中不能被其它自变量解释的部分,变量x的方差扩大因子回归系数标准误差T值T值=Coef./Std.Err.P值置信区间置信区间(CI)0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.15867480.0145294+2.086*0.0830332=0.18773353.回归系数检验P值用于说明回归系数的显著性,一般来说P值0.1(*)表示10%显著水平显著,P值0.05(**)表示5%显著水平显著,P值0.01(***)表示1%显著水平显著32333.16403.1640ˆvar()0.08303(1)1759.84(10.7392)458.91xMSESSTR4.系数标准误差计算当自变量只有两个时,R2j就是这两个变量的相关系数(pwcorrx2x1)的平方对多元回归“排除其它变量影响”的解释简单回归和多元回归估计值的比较.03789471=.0289094+.1678986*.0535163011011222011112122121ˆˆˆˆˆˆ1=02=0yxyxxxxxyxx则因此,在以下两种情况下会相等、样本中对的偏效应为0,即、样本中和不相关,即tw(functiont=tden(20,x),range(-33)),xline(0.172.086)ttail(df,t)=p计算单边P值双边时P值加倍就行了如:ttail(20,0.17498)*2=0.863invttail(df,p)=t计算单边临界值在双边95%置信度,5%显著水平时的临界值为:t0=invttail(20,0.025)=2.0862.0860.17t0t0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.15867480.0145294+2.086*0.0830332=0.18773355.系数置信区间Stata中查临界值和p值normalden(z)normal(z)invnormal(p)tden(df,t)t(df,t)invt(df,p)ttail(df,t)invttail(df,p)chi2den(df,x)chi2(df,x)invchi2(df,p)chi2tail(df,x)invchi2tail(df,p)Fden(df1,df2,x)F(df1,df2,x)invF(df1,df2,p)Ftail(df1,df2,x)invFtail(df1,df2,p)Ftail(2,702,3.96)=0.0195=1-F(2,702,3.96)6.回归结果的评价•(1)通过模型F检验说明线性关系是否成立。•(2)回归系数符号是否与理论或预期相一致。•(3)通过系数t检验说明y与x关系统计显著性。•(4)用判定系数说明回归模型在多大程度上解释了因变量y取值的差异。•(5)画残差直方图或正态概率图考察误差项的正态性假定是否成立。7.多重共线性判断•出现下列情况,暗示存在多重共线性:•(1)模型中各对自变量之间显著相关(相关系数检验)。•(2)当模型的线性关系F检验显著时,几乎所有回归系数的t检验都不显著。•(3)回归系数的正负号与预期的相反。•(4)容忍度(tolerance)与方差扩大因子(varianceinflationfactor,VIF)。某个自变量的容忍度等于1减去该自变量对其他k-1个自变量的线性回归的判定系数,容忍度越小,多重共线性越严重。方差扩大因子等于容忍度的倒数,VIF越大,多重共线性越严重,一般认为容忍度小于0.1、VIF大于10时,存在严重的多重共线性。2211=1jjjjVIFRRx容忍度为对其它自变量进行回归的判决系数X3的VIF=3.83=1/(1-0.7392)=1/(0.2608)=1/容忍度2211=1jjjjVIFRRx容忍度为对其它自变量进行回归的判决系数•不存在完全共线性假设,允许自变量之间存在相关关系,只是不能完全相关•1、一个变量是另一个变量的常数倍,如同时放入不同度量单位的同一变量•2、同一变量的不同非线性函数可以成为回归元,如consume~income+income2•但ln(consume)~ln(income)+ln(income2)共线性,应为ln(consume)~ln(income)+(lnincome)2•3、一个自变量是两个或多个自变量和线性函数回归模型中包含无关变量01122331233=0312OLSyxxxuxxxxxx在控制了和之后,对y没有影响,即。变量与和或许相关,或许不相关。当回归模型中包含一个或多个无关变量,对模型进行了过度设定,不影响估计的无偏性,但会影响估计的方差。遗漏变量偏误012012wageeducabiluwageeducvvabilu但由于能力不观测,因此估计模型为其中遗漏相关变量偏误采用遗漏相关变量的模型进行估计而带来的偏误称为遗漏相关变量偏误(omittingrelevantvariablebias)。设正确的模型为Y=0+1X1+2X2+却对Y=0+1X1+v进行回归,得2111ˆiiixyx将正确模型Y=0+1X1+2X2+的离差形式iiiixxy2211代入2111ˆiiixyx得21121212121221112111)()(ˆiiiiiiiiiiiiiixxxxxxxxxxyx(1)如果漏掉的X2与X1相关,则上式中的第二项在小样本下求期望与大样本下求概率极限都不会为零,从而使得OLS估计量在小样本下有偏,在大样本下非一致。121121xx,其中是对回归的斜率(2)如果X2与X1不相关,则1的估计满足无偏性与一致性;但这时0的估计却是有偏的。由Y=0+1X1+v得2121)ˆ(ixVar由Y=0+1X1+2X2+得)1()()ˆ(22122212221222121xxiiiiiirxxxxxxVar如果X2与X1相关,显然有)ˆ()ˆ(11VarVar如果X2与X1不相关,也有)ˆ()ˆ(11VarVarWhy?回归分析之联合检验•无约束模型:•约束后面q个变量:•原假设:•备选假设:H1:其中至少一个不等于0•检验F统计量:Regyx1-x4Testx2x3x4Regyx1(90.16463.279)/32.8363.279/(2541)F

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功