全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。(简称SSS)(2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。(简称SAS)(3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。(简称ASA)(4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。(简称AAS)(5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。(简称HL)角平分线的性质:在角平分线上的点到角的两边的距离相等.ABCPMNO∵OP平分∠AOB,PM⊥OA于M,PN⊥OB于N,∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.ABCPMNO∵PM⊥OA于M,PN⊥OB于N,PM=PN∴OP平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。二、典型例题举例例1、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.例2、如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.求证:△ABD≌△ACD.DCBA例3、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.例4、如图:D在AB上,E在AC上,AB=AC,∠B=∠C.求证AD=AE.例5、如图:∠1=∠2,∠3=∠4求证:AC=AD例6、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由CADB111122134例7、如图1,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,试判断△ABC与△AEG面积之间的关系,并说明理由.例8、如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证DF=EF例9、如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC于E,PF∥AC交BC于F,求证:D到PE的距离与D到PF的距离相等例10、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282cm,AB=20cm,AC=8cm,求DE的长.AGFCBDE图1AEBDCFABCDEDCEFBA例10、已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.例11、如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C,D是垂足,连接CD,求证:(1)∠ECD=∠EDC;(2)OD=OC;(3)OE是CD的中垂线.CEDBAO三、专题版块专题一:全等三角形的判定和性质的应用例1、如图,在△ABC中,AB=AC,BAC=40°,分别以AB、AC为边作两个等腰三角形ABD和ACE,使∠BAD=∠CAE=90°.(1)求∠DBC的度数.(2)求证:BD=CE.例2、如图,AB∥CD,AF∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截到CN=AB,求证:AM=AN。例4、如图,在△ABC中,BE、CF分别是AC、AB边上两条高,在BE上截取BD=AC,在CF的延长线上截到CG=AB,连接AD、AG,则AD与AG之间BCDEFAABCNMEFAGBCEDFBACDFE有何关系?证明你的结论。(例5、如图,等边△ABC和等边△CDE,A、C、E三点在一条直线上,点M为AD中点,点N为BE中点,。(1)求证:△CMN是等边三角形(2)将△CDE绕点C旋转,则下列结论发生变化吗?①AD=BE;②AD与BE相交所成的角的度数;③△CMN为等边三角形。专题二:通过证明全等三角形,证明线段相等或平行、例1、如图,已知△ABC△DEF,且点D与点A对应.求证:(1)AB∥DE;(2)DC=AF例2、如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.专题三:线段之间数量关系例1、已知:如图,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.ACBDEMNACEDBMN例2、如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A.C作BD的垂线,垂足分别为E.F,求证:EF=CF-AE.例3、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,判断PM与PN的关系.例4、如图所示,P为∠AOB的平分线上一点,PC⊥OA于C,∠OAP+∠OBP=180°,若OC=4cm,求AO+BO的值.例5、已知:如图,四边形ABCD中,AC平分BAD,CEAB于E,且B+D=180,求证:AE=AD+BEABDCE126、如图,AB∥CD,∠ABE=∠EBC,∠ECB=∠ECD,求证:BC=AB+CD。专题四:角平分线问题例1、如图,AD⊥DC,BC⊥DC,E是DC上一点,AE平分∠DAB,BE平分∠ABC,求证:点E是DC中点。ABCD12ABCFDEPDACBMNPDACBOABCDEACEDB例2、如图,已知BF是∠DBC的平分线,CF是∠ECB的平分线,求证:点F在∠BAC的平分线上。例3、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于O点,求证:①AE+CD=AC.②若已知AE+CD=AC求证:∠B=60°例4、在△ABC中D是BC中点ED⊥DF分别交AB、AC于E、F点试比较BE+CF与EF的大小例5、如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上一点,且∠EDF+∠BAF=180°,求证:DE=DF.DOCEBAABCDEFABCFEDABCDEFEABDCBACDEADCBFE四、全等三角形练习试题基础题1、如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D,E,F分别为CD,AD上的点,且CE=AF,如果∠AED=62°,则∠DBF=()A.62°B.38°C.28°D50°(5)2、如图,将一副三角板叠放在一起,使直角顶点重合于E点,则∠AEC+∠DEB=3、如图,四边形ABCD的对角线AC与BD相交于O点,12,34.求证:(1)ABCADC△≌△;(2)BODO.4、如图,在Rt△ABC中,∠=90°,BD平分∠ABC,交AC于点D,AC=15cm,且CD:AD=2:3,求点D到AB的距离。5、如图,AD=BC,AD∥BC,AE=FC.求证:BE∥DF.6、如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.DCBAO1234ABCDEF7、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.8、如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D′.若使△ABC≌△A′B′C′,请你补充条件________.(填写一个你认为适当的条件即可)9、如图,∠DCE=90o,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,试说明AD+AB=BE.中档题1、如图,已知BE⊥AD,交AD延长线于点E,CF⊥AD,且BE=CF,请你判断AD是△ABC的中线还是角平分线,并说明你判断的理由.2、如图,CF,BE是△ABC高,且BP=AC,CQ=AB,试判断AP与AQ的数量关系,并证明.ABCDA′B′D′C′DCBAEABCPQEFCABPEFDBFACE(3、如图,P是∠BAC内一点,PE⊥AB,PF⊥AC,垂足分别为点E和F,AE=AF.(1)求证:PE=PF;(2)∠CAP与∠BAP相等吗?为什么?(4、如图,BF⊥AC于F,CE⊥AB于E,BF和CE交于点D,且BE=CF,求证:AD平分∠BAC5、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.6、如图17所示,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则下列结论正确的是()①△APC≌△BPD②△ADO≌△BCO③△AOP≌△BOP④△OCP≌△ODPA.①②③④B.①②③C.②③④D.①③④ABCDPOCABDEABDCPQEADCB能力题1、如图13所示,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,求△BDE的周长.2、根据下列条件,能画出唯一△ABC的是()A、AB=3,BC=4,CA=8B、AB=4,BC=3,∠A=30°C、∠C=60°,∠B=45°,AB=4D、∠C=90°,AB=63、如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ(4、如图,△ABC和△ADE是有公共顶点的等腰直角三角形.求证:BD=CE;∠ABD=∠ACE5、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有______________(把你认为正确的序号都填上).6、如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G,求证:BF=CG.ABCEDOPQ7、如图,已知BF=CE,BC=EF,AB=DE,求证:∠A=∠D,∠AEF=∠CBD。8、如图,∠B=∠C,EF⊥BC于E交AB于D,交CA和延长线于F,AM⊥FD于M,求证:FM=DM。9、如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA。(1)过点C作直线DE,分别交AM、BN于点D、E,求证:AB=AD+BE(2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线段的长度之间存在何种等量关系?谫你给出结论并加以证明。ABCDEFACBEDFMABCDENMABCDMNE