相似三角形训练试题一.解答题(共30小题)1.(2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.2.(2016•阜阳校级一模)如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.3.(2016春•昌平区期末)如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.4.(2016春•盐城校级月考)已知,如图,==,那么△ABD与△BCE相似吗?为什么?5.(2016春•郴州校级月考)如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;(1)证明:△ABC∽△ADE.(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:______.6.(2016春•淮安月考)在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.7.(2015•上饶校级模拟)如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.8.(2015秋•寿光市期末)如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.9.(2015春•潍坊校级期末)如图,D是△ABC的BC边上一点,E为AD上一点,若∠DAC=∠B,CD=CE,试说明△ACE∽△BAD.10.(2015秋•太原期末)如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?11.(2015秋•睢宁县期末)如图,在△ABC中,AB=8,AC=6,D是AC上的一点,且AD=2,试在AB上确定一点E,使得△ADE与原三角形相似,并求出AE的长.12.(2015秋•太和县校级期末)如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC.13.(2015秋•包河区期末)如图,在Rt△ABC中,∠A=90°,BC=10cm,AC=6cm,在线段BC上,动点P以2cm/s的速度从点B向点C匀速运动;同时在线段CA上,点Q以acm/s的速度从点C向点A匀速运动,当点P到达点C(或点Q到达点A)时,两点运动停止,在运动过程中.(1)当点P运动s时,△CPQ与△ABC第一次相似,求点Q的速度a;(2)当△CPQ与△ABC第二次相似时,求点P总共运动了多少秒?14.(2015春•宁波校级期末)如图,四边形ABCD和ACED都是平行四边形,B,C,E在一条直线上,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)则图中相似三角形(相似比为1除外)共有______对;(2)求线段BP:PQ:QR,并说明理由.15.(2015春•成武县期末)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.16.(2015秋•通州区期末)王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题,如图1,在△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是______,或______.请回答:(1)王华补充的条件是______,或______.(2)请你参考上面的图形和结论,探究,解答下面的问题:如图2,在△ABC中,∠A=30°,AC2=AB2+AB•BC.求∠C的度数.17.(2015秋•平顶山校级期中)已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?18.(2015秋•建湖县校级月考)如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.19.(2014•厦门模拟)如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.(1)若BC=8,求FD的长;(2)若AB=AC,求证:△ADE∽△DFE.20.(2013秋•云梦县期末)如图①,△ABC中,∠ACB=90°,∠ABC=α,将△ABC绕点A顺时针旋转得到△AB′C′,设旋转的角度是β.(1)如图②,当β=______°(用含α的代数式表示)时,点B′恰好落在CA的延长线上;(2)如图③,连接BB′、CC′,CC′的延长线交斜边AB于点E,交BB′于点F.请写出图中两对相似三角形______,______(不含全等三角形),并选一对证明.21.(2013秋•蚌埠期末)如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.(1)证明:△ADC∽△AEB;(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.22.(2014秋•海淀区期末)如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.23.(2014秋•安庆期末)如图,在△ABC,点D、E分别在AB、AC上,连结DE并延长交BC的延长线于点F,连结DC、BE,若∠BDE+∠BCE=180°.请写出图中的两对相似三角形(不另外添加字母和线),并选择其中的一对进行证明.24.(2014秋•腾冲县校级期末)如图,E是平行四边形ABCD的边BC的延长线上的一点,连接AE交CD于F,求证:△AFD∽△EFC.25.(2014秋•晋江市校级期中)在△ABC和△A1B1C1中,已知:AB=6cm,BC=8cm,AC=11cm,A1B1=18cm,B1C1=24cm,A1C1=33cm.求证:△ABC∽△A1B1C1.26.(2014秋•定陶县期中)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G,写出图中两对相似三角形,并证明其中的一对.27.(2014秋•浙江校级期中)如图,在△ABC中,AD⊥BC,垂足为D,EC⊥AB,垂足为E,连接DE.试说明△BDE∽△BAC.28.(2014秋•凌河区校级期中)如图,在同一平面内,将等腰直角三角形ABC和等腰直角三角形AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.若△ABC固定不动,△AFG绕点A旋转.(1)如图(1)在旋转过程中,当AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合)时,图中相似三角形有哪几对,请逐一写出;并选择一对加以证明.(2)如图(2)在旋转过程中,当G点在BC边上,AF与BC边交于点D,(1)中的结论是否有变化?若有,请直接写出图中新得出的相似三角形是______.29.(2013•杭州模拟)在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F为BC上的中点,连接DE,EF,DF.(1)求证:DF=EF;(2)直接写出除直角三角形以外的所有相似三角形;(3)在(2)中的相似三角形中选择一对进行证明.30.(2013秋•巴中期末)△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.2016年09月26日wx98wx的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.(2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【解答】解:(1)∵AD=BC,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.2.(2016•阜阳校级一模)如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.【解答】(1)证明:∵BF∥DE,∴==,∵AD=BD,∴AC=CG,AE=EF,在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5,∴CD=2.5,∴∠DCB=∠DBC,∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,∴△BCP≌△BCD(AAS),∴BP=CD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.3.(2016春•昌平区期末)如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.【解答】证明:∵∠BAC=90°,点M是BC的中点,∴AM=CM,∴∠C=∠CAM,∵DA⊥AM,∴∠DAM=90°,∴∠DAB=∠CAM,∴∠DAB=∠C,∵∠D=∠D,∴△DBA∽△DAC.4.(2016春•盐城校级月考)已知,如图,==,那么△ABD与△BCE相似吗?为什么?【解答】解:∵==,∴△ABC∽△DBE,∴∠ABC=∠DBE,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∵=,∴=,∴△ABD∽△CBE.5.(2016春•郴州校级月考)如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;(1)证明:△ABC∽△ADE.(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:AB=AD(答案不唯一).【解答】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE.∵∠C=∠E,∴△ABC∽△ADE.(2)补充的条件为:AB=AD(答案不唯一);理由如下:由(1)得:∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE;故答案为:AB=AD(答案不唯一).6.(2016春•淮安月考)在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为