等腰三角形的性质精选试题一.选择题(共21小题)1.(2009•呼和浩特)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或102.(2006•仙桃)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°3.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°4.(2003•青海)若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A.75°B.15°C.75°或15°D.30°5.(2006•普陀区二模)等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半6.在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12D.157.如图,AB=AC,∠C=70°,AB垂直平分线EF交AC于点D,则∠DBC的度数为()A.10°B.15°C.20°D.30°菁优网©2010-2014菁优网8.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,则图中全等三角形共有()A.0对B.1对C.2对D.3对9.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF的度数为()A.90°B.80°C.68°D.60°10.已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是()A.110°B.140°C.110°或140°D.以上都不对11.如图已知∠BAC=100°,AB=AC,AB、AC的垂直平分线分别交BC于D、E,则∠DAE=()A.40°B.30°C.20°D.10°12.如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4B.5C.6D.713.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48B.24C.12D.6菁优网©2010-2014菁优网14.在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,则∠PAB的度数为()A.50°B.60°C.70°D.65°15.如图,点D是线段AB与线段BC的垂直平分线的交点,∠B=40°,则∠ADC等于()A.50°B.60°C.70°D.80°16.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°17.有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A.2个B.3个C.4个D.5个18.设等腰三角形的顶角为∠A,则∠A的取值范围是()A.0°≤∠A≤180°B.0°<∠A<180°C.0°≤∠A≤90°D.0°<∠A<90°19.如图,已知△ABC中,AB=AC,AB的垂直平分线DE交AC于D,垂足为E,若AB=5cm,△BCD的周长为8cm,那么BC的长是()cm.A.3B.4C.5D.220.已知△ABC中,∠C=32°,∠A、∠B的外角平分线分别交对边的延长线于D、E两点,且AC=AD,则∠E=()A.10°B.16°C.20°D.24°菁优网©2010-2014菁优网21.如图,△ABC中,AB=BC=AD,D在BC的延长线上,则角α和β的关系是()A.α+β=180°B.3α+2β=180°C.3α+β=180°D.2β=α二.填空题(共5小题)22.(2011•沈河区一模)如图,在△ABC中,∠B=∠C,点D、E分别在BC、AC边上,∠CDE=15°,且∠AED=∠ADE,则∠BAD的度数为_________.23.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC=_________.24.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管_________根.25.如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B_________∠1,∠C_________∠2;若∠BAC=126°,则∠EAG=_________度.26.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有_________处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于_________.菁优网©2010-2014菁优网三.解答题(共4小题)27.已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.猜想:_________.证明:28.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)29.如图所示,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24cm,且BC=10cm,求AB的长.30.如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC.菁优网©2010-2014菁优网等腰三角形的性质精选试题参考答案与试题解析一.选择题(共21小题)1.(2009•呼和浩特)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或10考点:等腰三角形的性质;三角形三边关系.1184454专题:分类讨论.分析:题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.解答:解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选C.点评:本题考查等腰三角形的性质及相关计算.学生在解决本题时,有的同学会审题错误,以为15,12中包含着中线BD的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况;注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.2.(2006•仙桃)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°考点:线段垂直平分线的性质;等腰三角形的性质.1184454专题:计算题.分析:首先由AB=AC可得∠ABC=∠ACB,再由DE垂直平分AC可得DC=AD,推出∠DAC=∠DCA.易菁优网©2010-2014菁优网求∠DCB.解答:解:AB=AC,∠A=50°⇒∠ABC=∠ACB=65°.∵DE垂直平分AC,∴∠DAC=∠DCA.∴∠DCB=∠ACB﹣∠DCA=65°﹣50°=15°.故选A.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质,考生主要了解线段垂直平分线的性质即可求解.3.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.1184454专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.4.(2003•青海)若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A.75°B.15°C.75°或15°D.30°考点:等腰三角形的性质;三角形内角和定理.1184454专题:压轴题;分类讨论.分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.解答:解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°,故选C.点评:熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.菁优网©2010-2014菁优网5.(2006•普陀区二模)等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半考点:等腰三角形的性质.1184454分析:作出图象根据等腰三角形两底角相等、三角形内角和定理和直角三角形两锐角互余列式求解.解答:解:△ABC中,∵AB=AC,BD是高,∴∠ABC=∠C=在Rt△BDC中,∠CBD=90°﹣∠C=90°﹣=.故选A.点评:本题考查了等腰三角形的性质:等边对等角,以及直角三角形两锐角互余的性质.题目本身是规律性的结论,要注意总结掌握,在今后的分析问题时可直接应用.6.在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12D.15考点:线段垂直平分线的性质;等腰三角形的性质.1184454分析:由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB与BC的和,又由AB=AC=9,BC=6,即可求得答案.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.点评:此题考查了线段垂直平分线的性质.解题的关键是注意掌握数形结合思想与转化思想的应用.7.如图,AB=AC,∠C=70°,AB垂直平分线EF交AC于点D,则∠DBC的度数为()菁优网©2010-2014菁优网A.10°B.15°C.20°D.30°考点:线段垂直平分线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.1184454专题:计算题.分析:根据等腰三角形的性质求出∠ABC,求出∠A,根据线段的垂直平分线求出AD=BD,得到∠A=∠ABD,求出∠ABD的度数即可.解答:解:∵AC=AB,∠C=70°