浅谈数形结合思想方法在高中数学中的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

浅谈数形结合思想方法在高中数学中的应用一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。2.运用数形结合思想解题的三种类型及思维方法:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。三、数形结合的思想方法的应用(一)解析几何中的数形结合解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.1.与斜率有关的问题【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围.解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知直线l过定点M(0,-1),且斜率为-.∵l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大.【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可判断出斜率的取值范围.2.与距离有关的问题【例2】求:y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大(小)值.【分析】可看成求两动点P(cosθ,sinθ)与Q(cosα-3,sinα+2)之间距离的最值问题.解:两动点的轨迹方程为:x2+y2=1和(x+3)2+(y-2)2=1,转化为求两曲线上两点之间距离的最值问题.如图:3.与截距有关的问题【例3】若直线y=x+k与曲线x=恰有一个公共点,求k的取值范围.解:曲线x=是单位圆x2+y2=1的右半圆(x≥0),k是直线y=x+k在y轴上的截距.由数形结合知:直线与曲线相切时,k=-,由图形:可得k=-,或-1k≤1.4.与定义有关的问题【例4】求抛物线y2=4x上到焦点F的距离与到点A(3,2)的距离之和为最小的点P的坐标,并求这个最小值.【分析】要求PA+PF的最小值,可利用抛物线的定义,把PF转化为点P到准线的距离,化曲为直从而借助数形结合解决相关问题.解:P′是抛物线y2=4x上的任意一点,过P′作抛物线的准线l的垂线,垂足为D,连P′F(F为抛物线的焦点),由抛物线的定义可知:.过A作准线l的垂线,交抛物线于P,垂足为Q,显然,直线AQ之长小于折线AP′D之长,因而所求的点P即为AQ与抛物线交点.∵AQ直线平行于x轴,且过A(3,2),所以方程为y=2,代入y2=4x得x=1.∴P(1,2)与F、A的距离之和最小,最小距离为4.【点评】(1)化曲线为直线是求距离之和最有效的方法,在椭圆,双曲线中也有类似问题.(2)若点A在抛物线外,则点P即为AF与抛物线交点(内分AF).(二)数形结合在函数中的应用1.利用数形结合解决与方程的根有关的问题方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.【例5】已知方程x2-4x+3=m有4个根,则实数m的取值范围.【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.解:方程x2-4x+3=m根的个数问题就是函数y=x2-4x+3与函数y=m图象的交点的个数.作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0m1时,两函数图象有4交点,故m的取值范围是(0,1).数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象是解决这类问题的前提.2.利用数形结合解决函数的单调性问题函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解决有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.【例6】确定函数y=的单调区间.画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].3.利用数形结合解决比较数值大小的问题【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1x2≤2,都有f(x1)f(x2);③y=f(x+2)的图象关于y轴对称.则f(4.5),f(6.5),f(7)的大小关系是.解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.显然,f(4.5)f(7)f(6.5).4.利用数形结合解决抽象函数问题抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](ab0)上,f′(x)g(x)+f(x)g′(x)0,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x)在区间[-b,-a]上().A.是增函数且有最小值-5B.是减函数且有最小值-5C.是增函数且有最大值5D.是减函数且有最大值5【解析】f′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′0.∴y=f(x)·g(x)在区间[a,b](ab0)上是增函数,又∵f(x),g(x)分别是定义在R上的奇函数和偶函数.∴y=f(x)·g(x)是奇函数.因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.(三)运用数形结合思想解不等式1.求参数的取值范围【例9】若不等式ax的解集是{x|0x≤4},则实数a的取值范围是().A.[0,+∞)B.(-∞,4]C.(-∞,0)D.(-∞,0]解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知ax的解集是{x|0x≤4},即要求半圆在直线的上方,由图可知a0,所以选C.【点评】本题很好的体现了数形结合思想在解题中的妙用.【例10】若x∈(1,2)时,不等式(x-1)2logax恒成立,则a的取值范围是().A.(0,1)B.(1,2)C.(1,2]D.[1,2]解:设y1=(x-1)2(1x2),y2=logax.由图可知若y1y2(1x2),则a1.y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1y2(1x2)∴1a≤2时(x-1)2logax在x∈(1,2)上成立,故选C.【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.2.解不等式【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a0),那么不等式xf(x)0的解集是().A.{x|0xa}B.{x|-ax0或xa}C.{x|-axa}D.{x|x-a或0xa}解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a0),可得到f(x)图象,又由已知xf(x)0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.【例12】设函数f(x)=2,求使f(x)≥2的取值范围.【解法1】由f(x)≥2得2≥2=2.易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞).【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由双曲线的图象和x+1-x-1≥知x≥.【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境.(四)运用数形结合思想解三角函数题纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.解:函数f(x)=由图象可知:1k3.【例14】当0x时,函数f(x)=的最小值为().A.2B.2C.4D.4解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线的斜率,又点B的轨迹方程(0α),即x2+=1(x0),如图,当过点A的直线l∶y=kx+5与椭圆x2+=1(x0)相切时,k有最小值4,故选C.【例15】若sinα+cosα=tanα(0α),则α∈().解:令f(x)=sinx+cosx=sin(x+)(0α),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP.再令α=,则sin+cos=≈1.366,tan=≈1.7321.367,由图象知xP应小于.故选C.【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0x3时f(x)图象如下图所示,那么不等式f(x)cosx0的解集是()

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功