14.3.2公式法-第1课时课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1课时14.3.2公式法1.运用完全平方公式分解因式,能说出完全平方公式的特点.2.会用提公因式法与公式法分解因式.3.培养学生的观察、联想能力,进一步了解换元的思想方法,并能说出提公因式法在这类因式分解中的作用.1.如何理解因式分解?把一个多项式分解成几个整式的积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?2.什么是提公因式法分解因式?一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.3.判断下列各式是因式分解的是.(1)(x+2)(x-2)=x2-4(2)x2-4=(x+2)(x-2)(3)x2-4+3x=(x+2)(x-2)+3x(2)1.计算:(1)(x+1)(x-1)(2)(y+4)(y-4)2.根据1题的结果分解因式:(1)(2)12x162y12x162y=(x+1)(x-1)=(y+4)(y-4)3.由以上1、2两题你发现了什么?符合因式分解的定义,因此是因式分解,是利用平方差公式进行的因式分解.第1题等式可以看作是整式乘法中的平方差公式,第2题等式可以看作是因式分解中的平方差公式.平方差公式反过来就是说:两个数的平方差,等于这两个数的和与这两个数的差的积a²-b²=(a+b)(a-b)因式分解平方差公式:(a+b)(a-b)=a²-b²整式乘法利用平方差公式分解因式a2-b2=(a+b)(a-b)能用平方差公式分解因式的多项式的特点:(1)一个二项式.(2)每项都可以化成整式的平方.(3)整体来看是两个整式的平方差.两个数的平方差,等于这两个数的和与这两个数的差的积.【例1】把下列各式分解因式:(1)25-16x2.(2)9a2-b2.【解析】(1)25-16x2=52-(4x)2=(5+4x)(5-4x).(2)9a2-b2=(3a)2-(b)2=(3a+b)(3a-b).【例题】【例2】把下列各式分解因式:(1)9(m+n)2-(m-n)2.(2)2x3-8x.【解析】(1)9(m+n)2-(m-n)2=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).(2)2x3-8x=2x(x2-4)=2x(x+2)(x-2).有公因式时,先提公因式,再考虑用公式.1.下列各式能否用平方差公式分解?如果能分解,分解成什么?①x2+y2②x2-y2③-x2+y2④-x2-y2能,x2-y2=(x+y)(x-y)能,-x2+y2=y2-x2=(y+x)(y-x)不能不能【跟踪训练】2.判断下列分解因式是否正确.(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)·(a2-1).【解析】(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中右边还是多项式的形式,因此,最终结果是未对所给多项式进行因式分解.(2)不正确.错误原因是因式分解不彻底,因为a2-1还能继续分解成(a+1)(a-1).应为a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).例2.把下列各式因式分解(1).(x+z)²-(y+z)²(2).4(a+b)²-25(a-c)²(3).4a³-4a(4).(x+y+z)²-(x–y–z)²12解:(1).原式=[(x+z)+(y+z)][(x+z)-(y+z)]=(x+y+2z)(x-y)解:(2).原式=[2(a+b)]²-[5(a-c)]²=[2(a+b)+5(a-c)][2(a+b)-5(a-c)]=(7a+2b-5c)(-3a+2b+5c)解:(3)原式=4a(a²-1)=4a(a+1)(a-1)解:(4).原式=[(x+y+z)+(x-y-z)]×[(x+y+z)-(x-y-z)]=2x(2y+2z)=4x(y+z)3.分解因式:(1)x4-y4.(2)a3b-ab.【解析】(1)x4-y4=(x2)2-(y2)2=(x2+y2)(x+y)(x-y).(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).分解因式,必须进行到每一个多项式都不能再分解为止.=(x2+y2)(x2-y2)注意点:1.运用平方差公式分解因式的关键是要把分解的多项式看成两个数的平方差,尤其当系数是分数或小数时,要正确化为两数的平方差。2.公式a²-b²=(a+b)(a-b)中的字母a,b可以是数,也可以是单项式或多项式,要注意“整体”思想的运用。3.当要分解的多项式是两个多项式的平方时,分解成的两个因式要进行去括号化简,若有同类项,要进行合并,直至分解到不能再分解为止。4.运用平方差分解因式,还给某些运算带来方便,故应善于运用此法,进行简便计算。5.在因式分解时,若多项式中有公因式,应先提取公因式,再考虑运用平方差公式分解因式。小结:1.具有的两式(或)两数平方差形式的多项式可运用平方差公式分解因式。2.公式a²-b²=(a+b)(a-b)中的字母a,b可以是数,也可以是单项式或多项式,应视具体情形灵活运用。3.若多项式中有公因式,应先提取公因式,然后再进一步分解因式。4.分解因式要彻底。要注意每一个因式的形式要最简,直到不能再分解为止。1.分解因式m3–4m=.【解析】m3–4m=m(m+2)(m-2).答案:m(m+2)(m-2)2.因式分解:2a2-8=___________.【解析】原式=答案:3.因式分解:=______.【解析】先提公因式,再利用平方差公式分解因式;即ax2-ay2=a(x2-y2)=a(x+y)(x-y)答案:a(x+y)(x-y)2)2)(a2(a4)2(a22)2)(a2(a22ayax4.因式分解:x3-x=___.【解】x3-x=x(x2-1)=x(x+1)(x-1).5.因式分解:=______.【解】原式=(x²+1)(x+1)(x-1)x4–1用平方差公式进行简便计算:1)38²-37²2)213²-87²3)229²-171²4)91×89解:1)38²-37²=(38+37)(38-37)=752)213²-87²=(213+87)(213-87)=300×126=37800解:3)229²-171²=(229+171)(229-171)=400×58=23200解:4)91×89=(90+1)(90-1)=90²-1=8100-1=80996.利用因式分解计算:1002-992+982-972+962-952+…+22-12.【解析】原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)=199+195+191+…+3=5050.1.利用平方差公式分解因式:a2-b2=(a+b)(a-b).2.因式分解的步骤是:首先提取公因式,然后考虑用公式法.3.因式分解应进行到每一个因式不能分解为止.4.计算中应用因式分解,可使计算简便.通过本课时的学习,需要我们掌握:纯数学是魔术家真正的魔杖.——诺瓦列斯

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功