磁共振弹性成像:人体组织的弹性活体测量MagneticResonanceElastography:invivoMeasurementsofElasticityforHumanTissue摘要:弹性是材料的一个很重要的物理特性。在临床应用中,弹性被用于许多项身体检查中:例如触诊及叩诊。组织内弹性的不同可以便于诊断肿瘤及其扩散。对于检测肝硬化或软组织坏死来说,弹性还是一个重要的特性。此外,关于组织的弹性参数还被用于虚拟现实系统中,诸如影像触诊和计算机辅助手术中。在活体用,用传统的测量方法很难获得弹性特性。为了克服这个问题,磁共振弹性成像(magneticresonanceelastography,MRE)被发展来提供一种对人体组织的活体非侵入性弹性测量。我们在这篇论文中对MRE这一方法做了总结。当一材料在其表面以一已知频率振动时,应变声波会在材料内传播并且基于应变声波的传播速度可以计算出该材料弹性的物理常数。在MRE检测中,由应变声波引起的周期性微小位移可被与振动同步的MRI影像获得。通过测量局部应变波波长,我们可以获得弹性常数。许多MRE成像的例子(包括一些体内测量)和好几种由MRE图像来计算局部波长的方法都将在本文中介绍。1.简介:刚度是材料特性的一个重要参数。通过碰触并感觉材料是“硬”或“软”,我们可以简单的区分刚性材料和弹性的材料,诸如钢或钻石,橡胶或果冻。同样的,人体组织也可以被区分,如“硬”的骨头,“软”的各种内脏器官和皮肤等。如果组织的“刚度”可以用非侵入的方法来测定,我们可以期待他们被用做新的诊断各种病变的参数,例如肝硬化、肿瘤之类比正常组织硬度高的病灶,或是如坏死病灶这类比正常组织硬度低的。此外,对于虚拟现实系统诸如影像触诊和计算机辅助手术来说,组织弹性是一个非常重要的参数,可以用有限元方法或弹性质量模型,来模拟组织形变。我们讲这些关于材料刚度的物理性质称为弹性。传统的测量方法需要从人体获取一小片组织并藉由计算施予样本上的外力所产生的形变来的出样本的弹性性质。因此,我们不能活体测量组织的刚度,并且不能对“组织刚度”这一用于诊断各种病变的参数进行定量。近来,一个被称作磁共振弹性成像(MRE)的方法被MATHUPILLAI等用来检测人体组织弹性。这个非侵入性的方法有别于传统的检测方法,允许我们在临床应用上对活体的人体组织弹性进行测量。本文中,我们会对MRE的原理、方法及弹性材料的基本力学特性进行解释。最后,我们会列举MRE图像来说明MRE方法的特点。2.材料弹性:弹性的基本性质可以用胡克定律来解释,(以拉伸弹簧为例),弹簧的伸长量与施于其上的外力成正比,换言之:F=Kx式中,F为外力,x为弹簧的拉伸量,K为弹簧的弹性系数。除却弹簧,考虑一个高为L的立方体的情况,见图1。当对它每个单位面积上施加大小为Fn的力时(这个力被称为应力),立方体的高度减少量为d。应变Sn的定义为Sn=d/L。应变很小时,应力Fn和应变Sn的关系满足胡克定律:Fn=E·Sn比例常数E被称为杨氏模量,是表明材料刚度的弹性常数之一。另外一个重要的弹性常数是硬度,也被称为剪切模量。它代表了材料在受平行于其表面的外力作用下的形变。考虑一个高度为H的弹性立方体,见图2。当在平行于它上表面的方向上施加一个外力,它的上表面会产生一个距离为d的形变。Ss(=d/H)被称为剪切应变。剪切应力Fs与剪切应变Ss的关系同样满足胡克定律:Fs=G·Ss比例常数G被称为剪切模量。此外,体积弹性模量K和泊松比σ也都是用来定义材料弹性的参数。它们描述了与压力有关的材料的弹性以及三维空间里材料的应变。这些常数都只有2个自由度,而且这2个自由度是相互独立的。这意味着任意的2个弹性常数可由计算另外2个来获得。举例来说,经由杨氏模量E和剪切模量G,体积弹性模量K和泊松比σ可计算如下:MRE是一个利用测量由外力引起的振动波来计算剪切模量和杨氏模量的方法。当在材料上施加几种不同的振动时,引起的应变声波会传入材料的内部。应变声波有2种:纵波和横波。图3和图4展示了应变波在弹性体内的传播。当剪切应力作用于刚性材料的上表面时(如钢),剪切应变会立刻传播到材料底部。如果剪切应力以一个固定的频率振动,应变波会立即传播到材料的底部,如图3。换句话说,应变波的波长十分长,并且材料底部的相位同材料上表面的相位基本相同。另外一方面,在柔性材料的情况下(如橡胶),剪切应力会慢慢的从材料表面传播到材料底部。当剪切应力的振动作用时,应变波的速度很慢。应变波的波长很短并且振动由材料内个质点的来回振动得以传播,如图4。纵波的传播原理也相同,但是它的传播速度更快。应变声波的传播速度和弹性常数的关系描述如下:需要注意的是,式中E是杨氏模量,G是剪切模量,ρ是材料的密度。vt和vl分别是横波和纵波的波速。用体积弹性模量K和剪切模量G来表达,vl的大小为:比较(1)式和(3)式,我们可以发现,纵波的传播速度大于横波的传播速度(vtvl)波速v又能由振动频率f和波长λ表达:v=fλ(1)式和(2)式也可以写作:式中ft,λt,fl,λl,分别代表了横波的频率和波长、纵波的频率和波长。在MRE方法中,已知频率的外加振动作用于材料表面,由振动产生的应变声波可在磁共振图像上看到。由此,剪切模量和杨氏模量由测量图像中的波长再通过(4)式(5)式计算得出。为了精确测量,有必要测量得到材料的密度ρ。然而,在人体组织内,密度可以近似认为是1(ρ≈1)3.MRE的基本原理:在这节中,将主要描述如何从MRE图像中获得在材料中的波形传播。当材料表面以一个固定频率振动时,应变波将传播到材料内部,并且材料中各质点将做直线往复的微小运动。磁共振对这些运动有着高敏感度,并且MRE利用这一特性来获得波形。磁共振的运动敏感法可以分为相位法(phaseshiftmethod)和时间飞跃法(time-of-flightmethod)。这两种方法是在临床应用中被用来定量测定速度或磁共振血管成像的。然而,这种传统的影像速度测定法对微小运动没有足够的敏感度。虽然相位法比时间飞跃法对慢速的运动有着更大的敏感度,它还是不足够来检测应变波。为了克服这个问题,MRE使用了微动循环特性来增加相位法的敏感度。图5显示了由MUTHPILLAI报道的MRE射频序列的一个例子。这个序列有点类似于标准的梯度回波序列,而在原有的磁场中增加了一个被称为运动敏感的梯度(MSG,motionsensitizinggradient)。MSG是在信号采集前应用的一系列作用于信号读出的极性振荡梯度。这个射频序列类似于磁共振血管成像的相位对比法或是磁共振图像的速度测量,但后者只有一个磁场梯度。因此,我们可以说,MSG对于MRE来说是至关重要的。关键在于调节MSG的极性与外力振动相一致。考虑到弹性物体中的任意质点从右向左的振动,如图6所示。并且MSG作用于相同的方向上。当质点在tα时间开始向右移动时,我们将正向的MSG作用于其上。在这一时刻,小的相位位移产生直至tb时刻,此时的相位位移是朝右的。在下一个时间段里,质点将往回移动到左边。在这个时刻,MSG的极性被转到相反方向,从而得到反向MSG相位变化极性并且与反相的质点相位位移一致,就同上一个时间段内的一样。通过几次的序列重复,我们可以获得累积的相位位移。在获得2个相反极性的MSG作用下的MRE图像后,用相位减影处理2个获得图像,可以得到相位图(phaseimage)。在相位图中,每个像素的强度代表了运动速度的大小和方向。从而,应变波的波长可由相位图来获得。虽然微运动可以由于外力振动同步的MSG来获得,振动的频率被MSG的转换速度所限制。当我们使用梯度线圈和回波平面成像来生成MSG,最小的梯度坡度时间约为0.2ms到0.3ms。当大小为0.25ms的坡度时间用于MSG中时,一个MSG周期变为1ms并且振动的频率被限制为1000Hz。因为这个原因,数量级在几百赫兹的振动频率被用于MRE中。实际应用中,好几个梯度大小为20mT/m到25mT/m的MSG被用于MRE中。近来,梯度线圈的性能已被改良,梯度大、转换速度快的梯度被应用于实现回波平面成像法。通过这一改进,MRE法得以实现。4.现行的MRE:通过使用与MRE射频序列中MSG同步的外力振动器,我们可以获得MRE图像。MRE成像系统由图7内所示部分组成。激发器的组成见图8。在这个系统中,MRI时序控制器产生与射频序列同步的触发信号,在接受到这个触发信号后,波形产生器开始驱动激发器来产生作用于材料的外力振动。一个触发信号能产生多个平行于材料外表面的外力振动,如图8所示。然后,MRI时序控制器在若干延迟时间后(一个或多个周期)启动MSG。激发器产生横波,我们可以通过表现横波传播的图像来计算剪切模量。杨氏模量可由纵波传播获得。振动器所产生的振动必须与材料的外表面垂直。振动频率为125Hz的横、纵应变波图像示例于图9。这些图像都是在5%聚乙烯醇(PVA)水凝胶制成的体模中获得的。纵波的波长比横波的长尽管它们的振动频率是相同的,这表示纵波的速度比横波大。另一方面,在图像中,应变声波随着自身传播都变得不清晰起来,这证实了波传播的衰减。当PVA水凝胶浓度增加,其刚度越来越大。我们做了一个2层的不同浓度的PVA水凝胶体模来证明MRE图像可以显示刚度差异。图10中的左图显示了,上半部分为10%PVA、下半部分为5%PVA制成的体模的T2加权图像。上半部分比下半部分硬。图10中的右图显示了应用125Hz横波所获得的体模图像。体模上半部分内的波长比下半部分大。这一差异表面上半部分体模的剪切模量大于下半部分(基于它们的振动频率相同,由(4)式可知)。虽然我们不能清楚的看到,在这个图像中,波的反射发生在两个不同刚度材料表面的边界处。在交接处的上方区域,正向波和反射波互相干涉。当边界平面不垂直于波的传播方向时,不仅将形成反射波,还将形成衍射波。在这种情况下,无论是纵波还是横波的波长估算都会变得更加复杂。从MRE图像中估算波长(包括复杂的反射和衍射),是实现MRE临床应用的最重要的问题之一。正如我们可以很容易地预计,MRE图像中的波形会随着振动频率的改变而改变。应变波的速度是由杨氏模量和剪切模量决定的(见(1)式和(2)式)。应变波的波速是其频率和波长的乘积。因此,材料中的波长正比于振动频率的倒数。图11显示了,作用125Hz和250Hz横波,在7.5%PVA水凝胶体模中获得的MRE图像。这些图像说明,当频率增加了一倍时,波长会减半。MRE中的另一个控制参数是与振动相关的MSG。在MRE中,MSG与外力振动同步。然而,它们之间的相位差可以通过改变延迟时间(启动MSG到作用外部振动之间的时间,见图5)来改变。通过取得多个逐步增加相位偏差的图像,我们可以获得一系列的额图像,从中,我们可以简单的辨认出应变波的传播。MRE获得的,作用于10%-5%双层PVA水凝胶体模中的,多相位偏差的图像,如图12所示。这些图像由作用125Hz的横波获得,每个图像间的延迟时间提前1ms。因此,每1/8个振动周期的相位偏差都会增加。从这些图片中,我们可以观察到应变波向下传播。最后,我们举个MRE活体应用的例子。作用100Hz横波,获得的小腿处T2加权图像和MRE图像示于图13。从MRE图像,我们可以观察到只有表面附近有应变波。这意味着,应变波迅速的衰减。关于MRE活体研究的有关报道十分少,脑部研究由MANDUCA等报道。数位驱动模块被用于这些研究中。肌肉研究由SACKA、HEERS等提出。这些研究都使用了探针型振荡器。MRE是有效的测量人体组织弹性的方法,但是,但是,有必要建立一个,可提供有效能量到人体更深处,以衡量内部器官弹性的振荡器。另一方面,也有静态MRE方法的报道。在此方法中,不是用动态应力,而是静态应力作用于材料上。静态应力产生的形变由回波成像测量得到,以此计算弹性。此方法可能适合测量人体深部内脏的弹性。5.由MRE图像计算弹性:通过获得的MRE图像,估算应变波的波长,我们可以计算出弹性(由(4)式和(5)式)。因此,弹性计算的正