函数解析式的七种求法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。例1设)(xf是一次函数,且34)]([xxff,求)(xf解:设baxxf)()0(a,则babxabbaxabxafxff2)()()]([342baba3212baba 或  32)(12)(xxfxxf  或  二、配凑法:已知复合函数[()]fgx的表达式,求()fx的解析式,[()]fgx的表达式容易配成()gx的运算形式时,常用配凑法。但要注意所求函数()fx的定义域不是原复合函数的定义域,而是()gx的值域。例2已知221)1(xxxxf)0(x,求()fx的解析式解:2)1()1(2xxxxf,21xx2)(2xxf)2(x三、换元法:已知复合函数[()]fgx的表达式时,还可以用换元法求()fx的解析式。与配凑法一样,要注意所换元的定义域的变化。例3已知xxxf2)1(,求)1(xf解:令1xt,则1t,2)1(txxxxf2)1(,1)1(2)1()(22ttttf1)(2xxf)1(xxxxxf21)1()1(22)0(x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数)(2xgyxxy与的图象关于点)3,2(对称,求)(xg的解析式解:设),(yxM为)(xgy上任一点,且),(yxM为),(yxM关于点)3,2(的对称点则3222yyxx,解得:yyxx64,点),(yxM在)(xgy上xxy2把yyxx64代入得:)4()4(62xxy整理得672xxy67)(2xxxg五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5设,)1(2)()(xxfxfxf满足求)(xf解xxfxf)1(2)(①显然,0x将x换成x1,得:xxfxf1)(2)1(②解①②联立的方程组,得:xxxf323)(例6设)(xf为偶函数,)(xg为奇函数,又,11)()(xxgxf试求)()(xgxf和的解析式解)(xf为偶函数,)(xg为奇函数,)()(),()(xgxgxfxf又11)()(xxgxf①,用x替换x得:11)()(xxgxf即11)()(xxgxf②解①②联立的方程组,得11)(2xxf,xxxg21)(六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。例7已知:1)0(f,对于任意实数x、y,等式)12()()(yxyxfyxf恒成立,求)(xf解对于任意实数x、y,等式)12()()(yxyxfyxf恒成立,不妨令0x,则有1)1(1)1()0()(2yyyyyyfyf再令xy得函数解析式为:1)(2xxxf七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8设)(xf是定义在N上的函数,满足1)1(f,对任意的自然数ba,都有abbafbfaf)()()(,求)(xf解Nbaabbafbfaf,)()()(,,不妨令1,bxa,得:xxffxf)1()1()(,又1)()1(,1)1(xxfxff故①分别令①式中的1,21xn得:(2)(1)2,(3)(2)3,()(1),fffffnfnn将上述各式相加得:nfnf32)1()(,2)1(321)(nnnnfNxxxxf,2121)(2

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功