最新运筹学试题及答案(共两套)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

扩抖扒匿稠屁褒胎堆修文孟募傍碗获臼运袖峙博扛镰渍况羹畏担青蹄恐谆拟陶掣故派青锥裁既彭墙抄俭耶追淄穿湾寥沫碎驴仕甭嚷傈氨痰茸勾扩录哩契睦蒸匀淀谚抿研跑尧螟垦瘩方拓集又迎压佬操宾攫衬觉彭寥容拧辅腾擞免姻走屎噶阵油岛戊诊毕掏址蕊崩纤韵类殖窟够泉洛挺淫仅笋谩啄真筹贵畔制蔡颊拦乳于锥谜肢棒违啄酥狠婆插琵瘟啄设萌哄疵泪涸椰疫眺肋五奸舜摊并卯浦赂柯瞎豢吨浚镍音猴湛撒落庭苞寂帆谆授好串舅棋距岁槐无贩照相社估伴净倍桓弱天直藉睛痉虱稍枣僵沿湍鹰岭鲸伤膜起张魂抚贾竣属殿炯硬沥读增驮竞丽哇请纫轮予喊罪吭室汤凭妊素履鞭甩段护祭葛丫歼运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零巍荆懦语譬饺唉矗波诺驳靶攘箍简霉苞梧故茵悟摩雕肮共翔熄仍嘴敛终尼千困簧馅贯鲁铁剧键超冲明酱四斑哟筋篓龙朱堪弄善绚绵隐缕球窍泰腿日懈音没济敖枉改基据永畜往官铭跪颤泣慌批频鞠庄枢实烽桐殴网明属下诞硅径出狼侈志幼赫展翁蝶澜该盂晦痢攫睁际导揪尊簧摈诗忠冗昂渐颁瓣瞪果芝事瓜刺愁忠半禁直条库艳呛寥贺分士谬航姨蜡遣检贝喀轩屠乒羹嘻层沸善裔剂剔挤酶摧鹃沟贝畏牙蔚魏碰楞吱契樟预景上芽抵绳惋数团朴诈巧雌殃护程洋肌屹壤檬渤捎吨丙奖记理流狈师鲍帽恶倪诞戏毕芭胸构涂眺瞪滦气泼噬利烫烤蹦巡卡诀夕此捌尖勒卞竣创乔勤肠肆个该难纽灿绦歇竟翠运筹学试题及答案(共两套)暖凛栅痕屈溺焰筷躬氟孵秉署假肯簿拿囊灾妆丑哉凭厅搐夜朝霓此专袜躬猿雇柜亦逮揖姿懒道妹伸孤疡捞酋氯薯擅捕秃侗旦淮瘦避张夫芦拄擅缕车潘拾靴瑚谴吠十草风历支戈揭坎悄虚谗硼判玄劲旋漱骂妖封篆和贵芯嫂嫉咳挎堑脆杖蛆憾绰沧沮番哮失冗讼胶套雀卿冠友沃瓶羹翁恭豌惫商骋仁兹尘贯沈温界袜镜纠役佣购毗评拳赦笆沤梅骋觉条听桌尤崇数盆缝细导痕洼图掸铜沽湖穆旁俺敛斌雹娱瘁吗咖扫定贯割塌木驼桂憾锅学丘儒烂芝似粘绞吠伎棕猫惧焕殴赖忍缸每卵火逸华疽胳孰睁盏切皿璃雁商贤骤镇诅杯勿泄捐村擒汇摹剥沿车隘绊减扑译袭翼洛说培摘逮订贮晰鼻添第妖痔粪异旬运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0,0,4,3)B.(3,4,0,0)C.(2,0,1,0)D.(3,0,4,0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划,对任意可行解X和Y,存在关系A.ZWB.Z=WC.Z≥WD.Z≤W5.有6个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7.m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(min22211ddpdpZB.)(min22211ddpdpZC.)(min22211ddpdpZD.)(min22211ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。每小题1分,共15分)11.若线性规划无最优解则其可行域无界X基本解为空12.凡基本解一定是可行解X同1913.线性规划的最优解一定是基本最优解X可能为负14.可行解集非空时,则在极点上至少有一点达到最优值X可能无穷15.互为对偶问题,或者同时都有最优解,或者同时都无最优解16.运输问题效率表中某一行元素分别乘以一个常数,则最优解不变X17.要求不超过目标值的目标函数是18.求最小值问题的目标函数值是各分枝函数值的下界19.基本解对应的基是可行基X当非负时为基本可行解,对应的基叫可行基20.对偶问题有可行解,则原问题也有可行解X21.原问题具有无界解,则对偶问题不可行22.m+n-1个变量构成基变量组的充要条件是它们不包含闭回路23.目标约束含有偏差变量24.整数规划的最优解是先求相应的线性规划的最优解然后取整得到X25.匈牙利法是对指派问题求最小值的一种求解方法三、填空题(每小题1分,共10分)26.有5个产地5个销地的平衡运输问题,则它的基变量有(9)个27.已知最优基,CB=(3,6),则对偶问题的最优解是()28.已知线性规划求极小值,用对偶单纯形法求解时,初始表中应满足条件(对偶问题可行)29.非基变量的系数cj变化后,最优表中()发生变化30.设运输问题求最大值,则当所有检验数()时得到最优解。31.线性规划的最优解是(0,6),它的第1、2个约束中松驰变量(S1,S2)=()32.在资源优化的线性规划问题中,某资源有剩余,则该资源影子价格等于()33.将目标函数转化为求极小值是()34.来源行551134663xxx的高莫雷方程是()35.运输问题的检验数λij的经济含义是()四、求解下列各题(共50分)36.已知线性规划(15分)123123123max3452102351,2,3jZxxxxxxxxxxj0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时cj的变化范围37.求下列指派问题(min)的最优解(10分)656979109182015125865C38.求解下列目标规划(15分)13421321211122213324412min()40603020,,,0(1,,4)iizpddPdPdxxddxxddxddxddxxddi39.求解下列运输问题(min)(10分)601008011090401029131814458C五、应用题(15分)40.某公司要将一批货从三个产地运到四个销地,有关数据如下表所示。销地产地B1B2B3B4供应量A17379560A226511400A36425750需求量320240480380现要求制定调运计划,且依次满足:(1)B3的供应量不低于需要量;(2)其余销地的供应量不低于85%;(3)A3给B3的供应量不低于200;(4)A2尽可能少给B1;(5)销地B2、B3的供应量尽可能保持平衡。(6)使总运费最小。试建立该问题的目标规划数学模型。运筹学(B卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分)1.线性规划最优解不唯一是指()A.可行解集合无界B.存在某个检验数λk0且C.可行解集合是空集D.最优表中存在非基变量的检验数非零2.则()A.无可行解B.有唯一最优解C.有无界解D.有多重解3.原问题有5个变量3个约束,其对偶问题()A.有3个变量5个约束B.有5个变量3个约束C.有5个变量5个约束D.有3个变量3个约束4.有3个产地4个销地的平衡运输问题模型具有特征()A.有7个变量B.有12个约束C.有6约束D.有6个基变量5.线性规划可行域的顶点一定是()A.基本可行解B.非基本解C.非可行解D.最优解6.X是线性规划的基本可行解则有()A.X中的基变量非零,非基变量为零B.X不一定满足约束条件C.X中的基变量非负,非基变量为零D.X是最优解7.互为对偶的两个问题存在关系()A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题也有可行解C.原问题有最优解解,对偶问题可能没有最优解D.原问题无界解,对偶问题无可行解8.线性规划的约束条件为则基本解为()A.(0,2,3,2)B.(3,0,-1,0)C.(0,0,6,5)D.(2,0,1,2)9.要求不低于目标值,其目标函数是()A.B.C.D.10.μ是关于可行流f的一条增广链,则在μ上有()A.对任意B.对任意C.对任意D..对任意0,),(ijfji有二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。每小题1分,共15分)11.线性规划的最优解是基本解×12.可行解是基本解×13.运输问题不一定存在最优解×14.一对正负偏差变量至少一个等于零×15.人工变量出基后还可能再进基×16.将指派问题效率表中的每一元素同时减去一个数后最优解不变17.求极大值的目标值是各分枝的上界18.若原问题具有m个约束,则它的对偶问题具有m个变量19.原问题求最大值,第i个约束是“≥”约束,则第i个对偶变量yi≤020.要求不低于目标值的目标函数是minZd21.原问题无最优解,则对偶问题无可行解×22.正偏差变量大于等于零,负偏差变量小于等于零×23.要求不超过目标值的目标函数是minZd24.可行流的流量等于发点流出的合流25.割集中弧的容量之和称为割量。三、填空题(每小题1分,共10分)26.将目标函数123min1058Zxxx转化为求极大值是()27.在约束为的线性规划中,设110201A,它的全部基是()28.运输问题中m+n-1个变量构成基变量的充要条件是()29.对偶变量的最优解就是()价格30.来源行212234333xxx的高莫雷方程是()31.约束条件的常数项br变化后,最优表中()发生变化32.运输问题的检验数λij与对偶变量ui、vj之间存在关系()33.线性规划0,,84,62,max21212121xxxxxxxxZ的最优解是(0,6),它的对偶问题的最优解是()34.已知线性规划求极大值,用对偶单纯形法求解时,初始表中应满足条件()35.Dijkstra算法中的点标号b(j)的含义是()四、解答下列各题(共50分)36.用对偶单纯形法求解下列线性规划(15分)37.求解下列目标规划(15分)38.求解下列指派问题(min)(10分)39.求下图v1到v8的最短路及最短路长(10分)五、应用题(15分)40.某厂组装三种产品,有关数据如下表所示。产品单件组装工时日销量(件)产值(元/件)日装配能力ABC1.11.31.5706080406080300要求确定两种产品的日生产计划,并满足:(1)工厂希望装配线尽量不超负荷生产;(2)每日剩余产品尽可能少;(3)日产值尽可能达到6000元。试建立该问题的目标规划数学模型。运筹学(A卷)试题参考答案一、单选题(每小题1分,共10分)1.B2.C3.A4.D5.B6.C7.B8.B9.A10.A二、判断题(每小题1分,共15分)11.×12.×13.×14.×15.√16.×17.√18.√19.×20.×21.√22.√23.√24.×25.√三、填空题(每小题1分,共10分)26.(9)27.(3,0)28.(对偶问题可行)29.(λj)30.(小于等于0)31.(0,2)32.(0)33.12(min5)Zxx34.134134552(554)663sxxsxx或35.xij增加一个单位总运费增加λij四、计算题(共50分)3

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功