二元一次方程组的应用知识点1:利润问题利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩,当利润>成本时为盈利)、亏(不足,当利润<成本时为亏损)两个角度把握事物的总量。基本的量①成本价:有时也称进价,是商家进货时的价格;②标价:商家在出售时,标注的价格;③售价:消费者购买时真正花的钱数;④商品利润=商品售价-商品成本价;⑤利润率:商品出售后利润与成本的比值;⑥打折:商家为了促销所采用的一种销售手段,若打x折,就在标价的基础上乘以0.1x。例题:1、一件商品如果按售价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的售价为x元,进价为y元,则打九折时的卖出价为元,获利元,因此得方程;打八折时的卖出价为元,获利元,可得方程.x=解方程组,解得,y=因此,此商品定价为元.2、某家电商场将某种品牌的彩电按成本价提高了20%标价,谁知市场竞争激烈,商场只好按标价的九折销售,结果每台彩电只获利80元。该品牌的家电成本价与实际售价各是多少?3、某种商品的进价为15元,出售时标价是22.5元。由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_______元出售该商品。4、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则列方程组,方程组的解是5、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。则这次生意盈亏情况是()A、赚6元B、不亏不赚C、亏4元D、亏24元6、五.一期间,某商场搞优惠促销,决定由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付368元,这两面种商品原价之和为500元,问两种商品原价各是多少元?7、某厂买进甲、乙两种材料共56吨,用去9860元。若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?8、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?9、甲、乙两件服装的成本共160元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装接40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?10、今年我省荔枝又喜获丰收.目前市场价格稳定,荔枝种植户普遍获利.据估计,今年全省荔枝总产量为50000吨,销售收入为61000万元.已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨.11、某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚70元,后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损110元,则该商场每件羊绒衫的进价为_____,标价为_______.12、某种彩电原价是1998元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.13、某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为().A.10B.12C.14D.1714、在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为().A.2000元B.1925元C.1835元D.1910元15、某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35元,利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、乙两种商品各购进多少件?知识点2:行程问题路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例题:在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则可列方程组:点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.练习:1.一条船顺流航行,每小时行20千米;逆流航行每小时行16千米。那么这条轮船在静水中每小时行千米?2.两人在400m的圆形跑道上练习赛跑,方向相反时每32s相遇一次,方向相同时每3min相遇一次,若设两人速度分别为x(m/s)和y(m/s)(xy),则由题意列出方程组为_________.3.A,B两地相距20km,甲从A地,乙从B地同时出发相向而行,经过2h相遇,相遇后,甲立即返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2km,则两人的速度分别是多少?4.一只船在一条河上的顺流速度是逆流速度的3倍,则这只船在静水中的速度与水流速度之比为:_________.5.已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度.知识点3:配套问题加工总量成比例例题:某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即ab甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:abc甲产品数乙产品数丙产品数.练习:1.张阿姨要把若干个苹果分给小朋友们吃,若每人2个,则多1个;若每人3个,则缺2个,苹果和小朋友各有多少个?2.两台拖拉机共运水泥35t,其中一台比另一台多运7t,则这两台拖拉机分别运送了水泥多少吨?3.如图所示,周长为34的长方形ABCD被分成7个大小完全一样的小长方形,则每个小长方形的面积为().A.30B.20C.10D.144.一个长方形周长为30,若它的长减少2,宽增加3,就变成了一个正方形,设该长方形长为x,宽为y,则可列方程组为().2()30303015....23232323xyxyxyxyABCDxyxyxyxy5.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?知识点4:数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.例题:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027xyxyyxxy,得14xy,因此,所求的两位数是14.点评:一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.练习:1.一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为y。题中的两个相等关系:1、个位数字=-5可列方程为:2、新两位数=可列方程为:知识点5:工程问题工作量=工作时间×工作效率工作时间=工作量÷工作效率工作效率=工作量÷工作时间其次注意当题目与工作量大小、多少无关时通常用“1”表示总工作量.1.一项工程,甲乙两人合作8天可完成,需费用3520元,若甲单独做6天后,剩下的由乙单独做还需12天才能完成,这样需要费用3480元。问甲一个人单独完成此工程费用为多少元?甲、乙两人单独做完成此项工程,各需多少天?哪一个人单独完成此工程的费用较省?2.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?十位上的数个位上的数对应的两位数相等关系原两位数xY10x+y10x+y=x+y+9新两位数yX10y+x10y+x=10x+y+27十位上的数个位上的数对应的两位数原两位数新两位数