1第3讲二次函数与方程、不等式第一部分知识梳理知识点一:待定系数法求二次函数解析式1.一般式:2yaxbxc(a,b,c为常数,0a);2.顶点式:2()yaxhk(a,h,k为常数,0a);3.两根式:12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.知识点二:二次函数的特殊点(1)、a+b+c的符号:由x=1时抛物线上的点的位置确定:点在x轴上方,则a+b+c。点在x轴下方,则a+b+c。点在x轴上,则a+b+c。(2)、a-b+c的符号:由x=-1时抛物线上的点的位置确定:点在x轴上方,则a-b+c。点在x轴下方,则a-b+c。点在x轴上,则a-b+c。(3)、2a±b的符号:由对称轴与X=1或X=-1的位置相比较的情况决定.(4)、b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.2知识点三:二次函数与不等式(组)1、二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程20axbxc是二次函数2yaxbxc当函数值0y时的特殊情况.图象与x轴的交点个数:①、当240bac时,图象与x轴交于两点1200AxBx,,,12()xx,其中的12xx,是一元二次方程200axbxca的两根.这两点间的距离2214bacABxxa.②、当0时,图象与x轴只有一个交点;③、当0时,图象与x轴没有交点.(1)当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;(2)当0a时,图象落在x轴的下方,无论x为任何实数,都有0y.2、抛物线2yaxbxc的图象与y轴一定相交,交点坐标为(0,)c;3、二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2yaxbxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)axbxca本身就是所含字母3第二部分考点精讲精练考点1、待定系数法求二次函数解析式例1、已知点A(2,3)在函数y=ax2-x+1的图象上,则a等于()A.-1B.1C.2D.-2例2、若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为()A.m=2B.m=±2C.m=D.m=±例3、已知抛物线顶点为(1,3),且与y轴交点的纵坐标为-1,则此抛物线解析式是.例4、已抛物线过点A(-1,0)和B(3,0),与y轴交于点C,且BC=,则这条抛物线的解析式为.例5、二次函数y=2x2+bx+c的图象经过点(2,3),且顶点在直线y=3x-2上,则二次函数的关系式为:.例6、已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.4例7、已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为2,又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.举一反三:1、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=-x2-4x-3B.y=-x2-4x+3C.y=x2-4x-3D.y=-x2+4x-32、已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为(C)A.y=x2-4x-5B.y=-x2+4x-5C.y=x2+4x-5D.y=-x2-4x-53、已知二次函数y=x2+bx+c的图象过A(c,0),对称轴为直线x=3,则此二次函数解析式为.4、抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.5、已知y与x2+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(a,12)在函数图象上,求a的值.56、如图,抛物线y=21x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.考点2、函数与方程例1、如果抛物线y=x2+(k-1)x+4与x轴有且只有一个交点,那么正数k的值是()A.3B.4C.5D.6例2、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m的结论正确的是()A.m的最大值为2B.m的最小值为-2C.m是负数D.m是非负数例3、设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17B.x12+x22=8C.x12+x22<17D.x12+x22>8例4、已知抛物线y=x2-2ax+a+2的顶点在x轴上,则方程的实数根的积6为.☆例5、已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.举一反三:1、抛物线y=x2-2x-3与坐标轴的交点个数为()A.0个B.1个C.2个D.3个2、如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是()A.b=0B.S△ABE=c2C.ac=-1D.a+c=03、二次函数y=ax2+bx+c的图象与x轴相交于(-1,0)和(5,0)两点,则该抛物线的对称轴是.4、已知抛物线y=x2+kx+4-k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.75、已知关于x的函数y=ax2+x+1(a为常数)(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.考点3、二次函数与不等式(组)例1、如图,是二次函数和一次函数y2=mx+n的图象,观察图象,写出y1>y2时x的取值范围是()A.-2<x<1B.x<-2或x>1C.x>-2D.x<1例2、若函数y=mx2+mx+m-2的值恒为负数,则m取值范围是()A.m<0或m>38B.m<0C.m≤0D.m>38例3、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:①当x时,函数值随着x的增大而减小;②关于x的一元二次不等式ax2=bx+c>0的解是.8例4、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4)、B(8,2)两点,则能使关于x的不等式ax2+(b-k)x+c-m>0成立的x的取值范围是.例5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.举一反三:1、抛物线y=ax2+bx+c(a>0)和直线y=mx+n(m≠0)相交于两点P(-1,2),Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x<-1B.x>3C.-1<x<3D.x<-1或x>32、已知:二次函数y=x2-4x+a,下列说法中错误的个数是()9①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.A.1B.2C.3D.43、直线y=-3x+2与抛物线y=x2-x+3的交点有个,交点坐标为.4、已知函数y=x2-2x-3的图象,根据图象回答下列问题.(1)当x取何值时y=0.(2)方程x2-2x-3=0的解是什么?(3)当x取何值时,y<0?当x取何值时,y>0?(4)不等式x2-2x-3<0的解集是什么?5、如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.10第三部分课堂小测1、一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()A.y=-2(x-1)2+3B.y=-(2x+1)2+3C.y=-2(x+1)2+3D.y=-(2x-1)2+32、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是1,-1,给出下列结论:①a+b+c=0;②b=0;③a=1.c=-1.其中正确的是()A.①②B.①③C.②③D.①②③3、已知:二次函数y=x2-4x-a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为-8③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1B.2C.3D.44、二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的关系式为,当时,y=3,根据图象回答:当时,y>0.5、如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1.若抛物线与x轴一个交点为A(3,0),则由图象可知,不等式ax2+bx+c≥0的解集是:.6、若关于x的方程3x2+5x+11m=0的一个根大于2,另一根小于2,则m的取值范围11是.7、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是.8、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是.9、如图,抛物线y=ax2+bx+c经过A(-4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(-4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.10、已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.1211、如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求直线AB的解析式;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)结合(1)(2)及图象,直接写出使一次函数的值大于二次函数的值的x的取值范围.第四部分提高训练1、若x1,x2(x1<x2)是方程(x-a)(x-b)