八年级整式乘法因式分解所有知识点总结与常考题提高难题压轴题练习与答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

.初二整式的乘法与因式分解所有知识点总结和常考题知识点:1.基本运算:⑴同底数幂的乘法:mnmnaaa⑵幂的乘方:nmmnaa⑶积的乘方:nnnabab2.整式的乘法:⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加.⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:22ababab⑵完全平方公式:2222abaabb;2222abaabb4.整式的除法:⑴同底数幂的除法:mnmnaaa⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:22ababab②完全平方公式:2222aabbab③立方和:3322()()ababaabb④立方差:3322()()ababaabb⑶十字相乘法:2xpqxpqxpxq⑷拆项法⑸添项法常考题:一.选择题(共12小题)1.下列运算中,结果正确的是().A.x3•x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y22.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b63.计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x64.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ayB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x5.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mnC.﹣x2﹣y2D.﹣x2+96.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2﹣1D.x2﹣6x+97.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)28.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.110.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b211.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.abB.(a+b)2C.(a﹣b)2D.a2﹣b212.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2二.填空题(共13小题)13.分解因式:3x2﹣27=.14.分解因式:a2﹣1=.15.因式分解:x2﹣9y2=.16.分解因式:x3﹣4x=.17.因式分解:a3﹣ab2=.18.分解因式:x2+6x+9=.19.分解因式:2a2﹣4a+2=.20.分解因式:x3﹣6x2+9x=.21.分解因式:ab2﹣2ab+a=.22.分解因式:2a3﹣8a2+8a=.23.分解因式:3a2﹣12ab+12b2=.24.若m2﹣n2=6,且m﹣n=2,则m+n=.25.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.三.解答题(共15小题)26.计算:(x﹣y)2﹣(y+2x)(y﹣2x)27.若2x+5y﹣3=0,求4x•32y的值.28.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b2.29.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.30.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.31.若a2﹣2a+1=0.求代数式的值.32.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;.(4)4+12(x﹣y)+9(x﹣y)2.33.(2a+b+1)(2a+b﹣1)34.分解因式:x3﹣2x2y+xy2.35.分解因式:(1)a4﹣16;(2)x2﹣2xy+y2﹣9.36.分解因式x2(x﹣y)+(y﹣x).37.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.38.因式分解(1)﹣8ax2+16axy﹣8ay2;(2)(a2+1)2﹣4a2.39.因式分解:(1)3x﹣12x3(2)6xy2+9x2y+y3.40.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值..初二整式的乘法与因式分解所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共12小题)1.(2015•甘南州)下列运算中,结果正确的是()A.x3•x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y2【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选A【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.(2008•南京)计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.3.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x6【分析】根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选:A.【点评】本题主要考查单项式相乘的法则和同底数幂的乘法的性质.4.(2005•茂名)下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ayB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解..【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.5.(2017春•薛城区期末)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mnC.﹣x2﹣y2D.﹣x2+9【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.6.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2﹣1D.x2﹣6x+9【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【解答】解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故A错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故B错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;D、x2﹣6x+9=(x﹣3)2,故D正确.故选:D.【点评】本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.7.(2009•眉山)下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)2【分析】根据公式特点判断,然后利用排除法求解.【解答】解:A、是平方差公式,故A选项正确;B、是完全平方公式,故B选项正确;C、是提公因式法,故C选项正确;D、(x+y)2=x2+2xy+y2,故D选项错误;故选:D.【点评】本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.8.(2015•菏泽)把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2).【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.(2016秋•南漳县期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.10.(2009•内江)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式..

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功