8th深基坑与边坡工程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

4土层锚杆4.1锚杆的发展与应用•锚杆是一种新型受拉杆件,它的一端与工程结构物或挡土桩墙联结,另一端锚固在地基的土层或岩层中,以承受结构物的上托力、拉拔力、倾侧力或挡土墙的土压力、水压力,它是利用地层的锚固力来达到维持结构物稳定的。4.1.1锚杆在土木工程中的应用4.1.2土层锚杆的发展•土层锚杆是在岩石锚杆的基础上发展起来的。用于隧道支护的岩石锚杆历史悠久,但直到1958年德国一个公司才首先在深基坑开挖中将其用于挡土墙支护。•土层锚杆具有以下一系列优点:1)与内支撑相比,挖土施工空间大。2)锚杆施工机械设备作业空间不大,适用于各种场地条件。3)锚杆的设计拉力可由抗拔试验获得,从而可以保证可靠的设计安全度。4)可以对锚杆施加预拉力,基坑变形容易控制。5)施工时的噪声很小。•锚杆支护在我国也是首先用于地铁隧道的,80年代初开始用于高层建筑基坑支护。土层锚杆以普通压力灌浆的居多,也有二次灌浆及高压灌浆的,受拉杆件(锚筋)有粗钢筋、高强度钢丝束、钢绞线等,层数从一层发展到了四层,并已制定了多个行业规范。目前土层锚杆的应用已相当普遍,并且都为预应力锚杆。•当然,任何技术的发展都是永恒的。锚杆技术的工艺材料、施工机具和理论研究等还在不断发展之中。4.2锚杆的构造及类型•锚杆由锚头、锚筋和锚固体三部分组成。见图4-2至图4-7。•锚头是锚杆体的外露部分。•锚固体通常位于钻孔的深部。•锚头与锚固体间一般还有一段自由段。•锚筋是锚杆的主要部分。贯穿锚杆全长。图4-2锚杆联结挡土桩、墙并锚固于土中的示意图图4-3钢筋锚杆锚头装置图4-4多根钢束锚杆锚头装置图4-5钢绞线及钢丝索锚夹具示意图4-6定位分隔器图4-7腰梁图4-8锚固体的基本类型4.3锚杆的抗拔作用4.3.1锚杆抗拔原理•当锚固段锚杆受力后,首先通过锚杆(索)与周边水泥砂浆间的握裹力传到砂浆中,然后通过砂浆传到周围土体。随着荷载增加,锚索与水泥砂浆之间的粘结力(握裹力)逐渐从锚固体的上部向锚固体的下部和外部发展,当应力传到锚固体的外侧时,就会在锚固体与土体间产生摩擦力,随着摩擦力的增大,锚固体与土体间可能发生相对位移,摩擦力又进一步增大,直到极限摩阻力。4.3.2锚杆的承载能力•锚杆承载力的确定是锚杆支护设计的重要内容。•普通灌浆锚杆(注浆压力0.3~0.5MPa)的承载能力(抗拔力)可以用下式确定:Nt=LmπDτ(4-2)式中Nt—锚杆承载能力(轴力);Lm—锚固段长度;D—锚杆孔径(或锚固体直径);τ—土的抗剪强度。•显然:锚杆的承载力是锚固体的直径、长度及土的抗剪强度的函数。•在设计时对锚杆承载力一般是有要求的,而锚固体的直径(钻孔直径)主要决定于钻孔设备。因此,只要能够确定土体的抗剪强度,就能容易的确定锚杆的长度了。由此看来,土的抗剪强度在确定土层锚杆的承载能力或在土层锚杆的设计中都至关重要。•=tan+c•=Kh–K—土层系数,通常砂土K=1,粘土K=0.5;–h—覆盖土层的高度,一般取锚固段中心到地面的高度(m)。4.3.3影响锚杆抗拔力的因素•如前所述,锚杆的抗拔力显然与锚固体的直径和长度密切相关。但除了锚固体的这两个几何参数外,还有土层性质,注浆压力以及锚杆的形式三个因素。即:一、土层性质的影响•土层的强度一般低于砂浆强度,如果施工灌浆的工艺良好,土层锚杆的抗拔力将主要决定于锚固体外围的土层抗剪强度。土体的抗剪强度变化很大,所以相同参数和施工质量的锚杆,抗拔力可以有很大的不同。倾角与长度是锚杆能否伸入优良土层的决定因素,设计时应给予重视。二、注浆压力的影响•灌浆压力对锚杆的抗拔力有很大影响。注浆压力越大,水泥浆颗粒越能够渗入到周围深部的土层中去,改善了原状土体的力学性能,增加锚固体与土层的摩擦力,也就增加了锚杆的抗拔力。曾有人做过试验,同一粉砂层中的相同长度的锚杆,当施工用的灌浆压力为1Mpa时其极限抗拔力为300kN,当灌浆压力增加到2.5Mpa时,其极限抗拔力达900kN。•试验也已证明:虽然锚杆的承载力随灌浆压力的增大而增大,但并不是无止尽的增加。英国ATC有限公司的试验结论是:当注浆压力超过4Mpa后,抗拔力增长就很小了。三、锚杆形式的影响•无论是带单个扩大头的锚固体锚杆,还是有多截头圆锥形的异形锚固体锚杆,它们的抗拔力都比普通锚杆大得多。4.5锚杆设计4.5.1设计步骤1.调查基坑及周边场地状况,确定工程的重要性等级,选取锚杆支护结构的安全系数。•作为锚杆支护设计的第一步,必须详细调查了解基坑及其周边的场地状况,如:地形、地貌,既有建筑物、构筑物、道路、管线、地下埋设物与建筑红线等,以及它们与基坑的相对位置。据此确定要重点保护的对象,工程的安全等级,锚杆支护结构的安全系数等。2.进行工程地质与水文地质勘察,确定地层参数•地下水位、上层滞水,场地附近有无渗水源头,工程施工是否在雨季或冬季,土层类型、级配、强度等。3.设计计算(1)计算单位长度挡墙的土压力。(2)根据土压力,计算锚杆的轴力(考虑倾角及间距)。(3)计算锚杆的锚固体长度。(4)计算锚杆的自由段长度。(5)计算锚杆(锚索)的断面尺寸。(6)计算连接锚杆锚头的腰梁断面尺寸。4.核算桩、墙与锚杆的整体稳定。5.绘制锚杆施工图。4.5.2锚杆布置一、锚杆层数•一般在基坑施工中,需先挖土到锚杆位置,然后进行锚杆施工,待锚杆预应力张拉后,方可挖下一步土。因此,多一层锚杆,就要增加一次施工循环。在可能情况下,应尽量减少布置锚杆的层数。如在粘土、砂土地区,12~13m深的基坑,一般用一层锚杆即可(即使挡土桩悬臂5~6m)。二、锚杆间距•锚杆间距过大,必然要增大单根锚杆的承载力,要么增加锚杆长度,要么增加锚杆直径,要么采用特殊的施工机械加工异型锚杆,而这些措施往往不如多加几根锚杆容易。•如果间距过小,由于锚杆之间土体的相互影响,单个锚杆的抗拉力往往不能很好发挥,容易产生所谓的“群锚效应”。三、锚杆倾角•锚杆倾角是锚杆与水平方向的夹角,它与施工机械性能有关,与地层土质有关系。但是,从理论上讲,锚杆的抗拉力只有水平分力是有效的,而垂直分力非但无效,相反增加了支护桩对桩底土层的压力,因此,水平布置的锚杆(倾角=00)效果最好。不过水平钻孔成孔困难,同时为了放置锚杆及注浆的方便,一般设计成斜土锚,倾角在150~350之间。有时使用较大的倾角是为了将锚固段安设到较深的优质土层中,或者是为了将锚头安设在地下水位以上,防止孔口涌砂。四、规程对锚杆间排距等参数的规定1.锚杆上覆土层厚度不宜小于4.0m。有的资料认为不宜小于5~6m。2.锚杆的水平和垂直间距一般不宜大于4.0m。最小的垂直距离不宜小于2.5m,最小的水平距离不宜小于1.5m,以避免群锚效应而降低锚固力。3.锚杆倾角一般不应小于100,不应大于450,以150~350为好。4.5.3锚杆抗拔安全系数一、国外对锚杆抗拔安全系数的规定•土层锚杆的抗拔安全系数是指土层锚杆的极限抗拔力与锚杆的设计容许抗拔力比值。现将有关国家和地区的规定列入表4-7。表4-7国外的土层锚杆的抗拔力安全系数国名临时性土层锚杆永久性土层锚杆德国(DIN4125)1.331.50日本(JSFD-77)1.502.50法国1.332.00英国2.002.00~3.00二、我国工程建设标准化协会行业规范的规定•我国工程建设标准化协会行业规范《土层锚杆设计与施工规范》(CECS22-90)的规定如表4-8。表4-8中国的土层锚杆的抗拔力安全系数锚杆破坏后危害程度安全系数K临时性锚杆永久性锚杆危害轻微,不构成公共安全1.41.8危害较大,但公共安全无问题1.62.0危害大,会出现公共安全问题1.82.24.5.4锚固段长度计算•根据公式Nt=Lm⋅πDτ,并考虑抗拔力安全系数K,容易得到锚固段长度Lm:(4-4)•其中:D为锚固体的直径,可取钻头直径的1.2倍;h应取锚固段中心到地面的高度,且不少于4m;K的取值如前所述,一般工程可取1.5,特别重要的工程或永久性工程可取2.0。实际工程中锚固段长度Lm也不应小于4m。tmNLKD0(tan)tKNDKhc4.5.5自由段长度计算•在图4-11中,O点为土压力零点,OE为假想滑裂面,锚杆AD与水平线AC的夹角为,欲求自由段AB的长度Lf。•∠AOB=450-φ/2,•∠ABO=∠EBD=∠ACB+∠CAB=450+φ/2+•按正弦定律:•AB:sin∠AOB=AO:sin∠ABO•所以自由端长度:•Lf=AO×sin(450–φ/2)/sin(450+φ/2+)•设计时取Lf=Lf+15m图4-11锚杆自由端长度计简图4.5.6锚杆(索)截面计算•土层锚杆(索)截面积可按下式计算:As=KmjNt/fyk式中:As—钢筋截面积(mm2);Kmj—安全系数;Nt—土层锚杆(索)的设计轴向拉力(kN);fyk—锚杆(索)材料的强度标准值(N/mm2)。4.6锚杆整体稳定计算4.6.1整体破坏模式•锚杆抗拔力虽已有安全系数,但是挡土桩、墙、锚杆、土体组成的结构,有可能出现整体性破坏。一种是:包括锚杆、支护桩墙在内的整个体系,从桩脚沿着某个曲面向基坑内滑动,造成土体破坏,如图4-12所示;图4-12整体下滑另一种是:由于锚杆长度不足,锚杆设计拉力过大,导致从桩墙底部到锚固段中点附件产生一条深层剪切滑缝,使围护结构倾覆,如图4-13所示。图4-13深层破裂、整体倾覆4.6.2整体稳定性验算•整体下滑的稳定性验算应当按土坡稳定性分析的方法用圆弧条分法进行验算,同学们参看有关土力学教材。•对于深部破裂、整体倾覆的稳定性验算可用德国的克兰茨(E.Kranz)方法。对于单层锚杆维护桩墙的深层破裂、整体倾覆的稳定性验算如下页的图4-14所示。•联结桩脚C点与锚固体中心点O,假设直线CO就是深层滑裂线;再过O点向上作垂直线交地面与D。这样,可能出现倾覆的整个土体就是楔体BCOD。•土楔上的作用力包括:土楔自重和地面超载G,挡土桩的支撑力Ea(主动土压力的反力),OD面上的主动土压力E1,CD面上的总反力Q,以及锚杆的拉力R。图4-14Kranz假设的倾覆楔体•土楔体处于平衡状态,上述五个力组成闭合的力多边形,如图4-15,以此可以求得锚固体所能承受的最大拉力Rmax,或它的水平分力Rhmax。•需要注意的是,在E.Kranz分析方法中,认为实际桩墙与土体之间的摩擦角和假想垂直破裂面OD上的摩擦角都是。实际情况如何需要我们去进一步研究。图4-15Kranz法的力多边形•可以推得锚固体可以承受的最大水平力Rhmax。(4-5)•最大锚固力与土层锚杆的设计轴向力之比就是抗倾覆安全系数,一般要求大于1.5,即:•其中:Nt—锚杆设计的轴向拉力;Tt—锚杆轴向拉力的水平分力。)tan(tan1)tan(]tan)([1hah1hahhmaxEEGEER5.1maxmaxthtSOTRNRK•两层以上土层锚杆的支护体系因深部破裂产生的抗倾覆稳定性计算方法与以上单层锚杆围护结构深部破裂的稳定性验算方法类似,只是可能出现的深层破裂面更多,需要进行稳定性验算的块体更多,计算更复杂。例如,双层锚杆可能有三个滑裂面,三层锚杆可能有6个滑裂面。•一般设计是否要核算锚杆整体稳定,需视锚固段是否伸入桩、墙脚下而定。加拿大有关规程对多层锚杆系统给出了下页图4-16所示的三种情况。(a)图锚杆全部在墙脚以上,要考虑全部核算其整体稳定,虚线是假定的拉结墙和假定的土体滑裂面。(b)图要对上面的两道锚杆核算其整体抗倾覆稳定性。(c)图中的三道锚杆都伸入到了墙脚以下,不需作整体稳定的核算。图4-16不同情况下的整体抗倾覆稳定性验算4.7锚杆的试验4.7.1锚杆极限承载力4.7.2锚固体受力与变形测试及分析4.7.3锚杆张拉与预应力损失一、锚杆张拉的必要性二、预应力值损失的原因三、预应力锁定值4.8锚杆施工4.8.1施工机械•我国现用的有日本矿研株式会RPD型钻机、德国Krupp公司钻机以及北京市机械施工公司研制的MZⅡ型钻机等。

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功