2015成人高考专升本数学【模拟试题】一.选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。*1.设函数fxxxx()[)2442,,,gx()是fx()的反函数,则()A.gxx()2B.gxx()2C.gxx()2D.gxx()2令yfxxxx()()22442xyxy22,反函数为yx2,选B*2.若x0是fx()的极值点,则()A.fx'()0必定存在,且fx'()00B.fx'()0必定存在,但fx'()0不一定等于零C.fx'()0可能不存在D.fx'()0必定不存在应选C。例:yx在x0处取得极小值,但该函数在x0处不可导,而f'()0不存在*3.设有直线xyz043,则该直线必定()A.过原点且垂直于x轴B.过原点且平行于x轴C.不过原点,但垂直于x轴D.不过原点,且不平行于x轴直线显然过(0,0,0)点,方向向量为l043,,,x轴的正向方向向量为v100,,,lvlv1040300(),故直线与x轴垂直,故应选A。*4.幂级数axnnn0在点x2处收敛,则级数()10nnna()A.绝对收敛B.条件收敛C.发散D.收敛性与an有关axnnn0在点x2处收敛,推得对x022(),,axnnn00绝对收敛,特别对x01有axannnnnn0001()绝对收敛,故应选A。5.对微分方程yyyex'''32,利用待定系数法求其特解y*时,下面特解设法正确的是()A.yAex*B.yAxBex*()C.yAxex*D.yAxex*2二.填空题:本大题共10个小题,10个空,每空4分,共40分,把答案填在题中横线上。*6.xxxxxlim/3321_________________.xxxxxxxxxlim/lim/()3323121111117.设yexx12,则y'_________________.*8.设Fxedtntxx()()22,则Fxn()()_________________.解:FxFxedtxeenntxxxx()()()(())'()'12222FxFxxeeexeexeeennxxxxxxxx()()()(())'()'1222244222222*9.dxxxe112ln_________________.解dxxxdxxxeee11121111222ln(ln)lnln232231()10.设zxy12122ln(),则dz()11,_________________.*11.已知ab121211,,,,,,则过点M0111(),,且同时平行于向量a和b的平面的方程为_________________.面的法向量为nabijkijk12121135平面的方程为311510()()()xyz即3510xyz12.微分方程dydxyex32的通解是_________________.*13.幂级数()xnnn1920的收敛区间是_________________.解:令uxxnnn()()192,uxxnnn122119()()nnnnnnnnuxuxxxxlimlim()()()()()122122199119由()x1912解得,24x,于是收敛区间是()24,14.设aijk2,则与a同方向的单位向量a0_________________.*15.交换二次积分Idxfxydyxx(),201的次序得I_________________.解:积分区域如图所示:D:yxyy,01,于是Idxfxydydyfxydxyyxx()(),,01012(1,1)x1三.解答题:本大题共13个小题,共90分,第16题~第25题每小题6分,第26题~第28题每小题10分,解答时应写出推理,演算步骤。*16.计算xxxdx(arctan)221解:xxxdx(arctan)221xxdxxxdx11222(arctan)1211222dxxxdx()(arctan)(arctan)1211323ln()(arctan)xxc*17.设fxex()12,求hfhfh011lim()()解:hfhfhf0111lim()()'()exexx1311222()18.判定函数yxx323的单调区间19.求由方程yxtdty22010所确定的隐函数yyx()的微分dy*20.设函数fxxfxdxe()ln()1,求fxdxe()1解:设Afxdxe()1,则fxxA()ln,两边求定积分得AfxdxxAdxee()(ln)11(ln)xxxAxAeAe11解得:Ae1,于是fxxe()ln121.判定级数()121nnnn的收敛性,若其收敛,指出是绝对收敛,还是条件收敛?22.设zxyxy223sin,求zxy23.求微分方程yyyxex'''32的通解*24.将函数fxx()arctan2展开为麦克劳林级数解:fxxxxnn'()(arctan)'()221424220()122102nnnnx(1212x)fxfftdtxdxnnnnxx()()'()[()]012210200()()1212212122102100nnnnnnnxnxdxnx即fxxnxnnnn()arctan()21221210211212x25.设ddxfxx()21,求fx'()26.求函数zxy122在条件y120之下的最值。*27.求曲线yxx321()的渐近线解:(1)xxyxxlimlim()321曲线没有水平渐近线(2)xxyxx11321limlim(),曲线有铅直渐近线x1(3)xxyxxxalimlim()2211xxyaxxxxlimlim()(())321xxxxxxblim()3322212所以曲线有斜渐近线yx2*28.设区域为D:12022xyy,,计算dxdyxyD422解:积分区域如图所示(阴影部分)dxdyxydrrdrD44222120121442212rdr()432212r()yxO【试题答案】一.1.令yfxxxx()()22442xyxy22,反函数为yx2,选B2.应选C。例:yx在x0处取得极小值,但该函数在x0处不可导,而f'()0不存在3.直线显然过(0,0,0)点,方向向量为l043,,,x轴的正向方向向量为v100,,,lvlv1040300(),故直线与x轴垂直,故应选A。4.axnnn0在点x2处收敛,推得对x022(),,axnnn00绝对收敛,特别对x01有axannnnnn0001()绝对收敛,故应选A。5.rr2320特征根为rr1212,,由此可见1(eeexxx()1)是特征根,于是可设yxAeAxexx*,应选C。二.6.xxxxxxxxxlim/lim/()3323121111117.yexexxxxexxexxxxx'()()'()()()()()1111211122222222228.解:FxFxedtxeenntxxxx()()()(())'()'12222FxFxxeeexeexeeennxxxxxxxx()()()(())'()'12222442222229.解dxxxdxxxeee11121111222ln(ln)lnln232231()10.zxxxy122,zyyxy122dzdxdy()111313,(dzzxdxzydyy()()()11111,,,)11.平面的法向量为nabijkijk12121135平面的方程为311510()()()xyz即3510xyz12.解:pxqxex()()32,通解为yeqxedxcpxdxpxdx()()(())eeedxcdxxdx323()eedxcxx35()eecxx3515()1523ecexx13.解:令uxxnnn()()192,uxxnnn122119()()nnnnnnnnuxuxxxxlimlim()()()()()122122199119由()x1912解得,24x,于是收敛区间是()24,14.a1126222,aaaijk016162615.解:积分区域如图所示:D:yxyy,01,于是Idxfxydydyfxydxyyxx()(),,01012(1,1)x1三.16.解:xxxdx(arctan)221xxdxxxdx11222(arctan)1211222dxxxdx()(arctan)(arctan)1211323ln()(arctan)xxc17.解:hfhfhf0111lim()()'()exexx1311222()18.解:yxxxxx'()()'()3333223222xxx222293()()当33x时,y'0,函数单调增加;当x3或x3时,y'0,函数单调减少,故函数的单调递减区间为()(),,33,单调递增区间为()33,19.解:方程两边对x求导(注意yyx()是x的函数):yxxyyy''22210解得yxyyx'2122dyydxxyyxdx'212220.解:设Afxdxe()1,则fxxA()ln,两边求定积分得AfxdxxAdxee()(ln)11(ln)xxxAxAeAe11解得:Ae1,于是fxxe()ln121.解:(1)先判别级数()112211nnnnnnn的收敛性令unnnnvnn1111122()vnnnn1111发散unnnnn1211发散(2)由于所给级数是交错级数且1unnnnunn1111221()()2nnulim0由莱布尼兹判别法知,原级数收敛,且是条件收敛。22.解:zxxyy223sin2232zxyyzxyxyy()(sin)4322xyyycos23.先求方程yyy'''320的通解:特征方程为rr2320,特征根为r11,r22,于是齐次方程通解为ycecexx122……(1)方程中的fxxexexx(),其中1不是特征根,可令yaxb