第2章《轴对称图形》:2.2轴对称的性质选择题1.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65°B.55°C.45°D.50°(第1题)(第3题)(第4题)2.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°3.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°填空题4.如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG=度.5.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG=度.(第5题)(第6题)(第7题)6.将一矩形纸条,按如图所示折叠,则∠1=度.7.如图,一张宽度相等的纸条,折叠后,若∠ABC=110°,则∠1的度数为度.8.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=度.9.生活中,将一个宽度相等的低条按图所示的方法折叠一下,如果∠1=140°,那么∠2=度.(第8题)(第9题)(第10题)10.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=.11.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=度.(第11题)(第12题)(第13题)12.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.13.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.14.如图,点P关于OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若PMN的周长=8厘米,则CD为厘米.(第14题)(第15题)(第16题)15.如图,已知正方形的边长为6cm,则图中阴影部分的面积是cm2.16.将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②).则所剪得的直角三角形较短的与较长的直角边的比是.17.如图,a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是度.18.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于度.(第18题)(第19题)(第20题)19.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.20.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.21.如图,将矩形ABCD沿BE折叠,若∠CBA′=30°,则∠BEA′=度.(第21题)(第22题)(第23题)22.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为.23.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=度.24.如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为.2(第24题)(第25题)(第26题)25.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=度.26.如图,AD是△ABC的中线,∠ADC=45°,BC=2cm,把△ACD沿AD对折,使点C落在E的位置,则BE=cm.27.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是度.(第27题)(第28题)28.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.答案:选择题1.故选A.考点:翻折变换(折叠问题).分析:根据对折,对折角相等,由直线平行,内错角相等,根据角的等量关系,求得∠1.解答:解:作图如右,∵图形对折,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∵∠2+∠3=130°,∴∠1=65°,故选A.点评:本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.2.故选B.考点:翻折变换(折叠问题).专题:压轴题.分析:由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG.解答:解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.3.故选B.考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠前后对应角相等可知.解答:解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.填空题4.故填64.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:因为平行所以有∠EFG=∠CEF,又由题意可知∠FEC和∠FEG本就是同一个角,所以相等,根据平角概念即可求出∠BEG.解答:解:∵AD∥BC,∴∠EFG=∠CEF=58°,∵∠FEC=∠FEG,∴∠FEC=∠FEG=∠EFG=58°,∴∠BEG=180°-58°-58°=64°.点评:此题主要考查了折叠的性质和平行线的性质.学生平时要多进行观察,总结规律.明白折叠后等角是哪些角.5.故填64.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:此题要求∠AEG的度数,只需求得其邻补角的度数,根据平行线的性质以及折叠的性质就可求解.解答:解:根据长方形的对边平行,得AD∥BC,∴∠DEF=∠1=58°.再根据对折,得:∠GEF=∠DEF=58°.再根据平角的定义,得:∠AEG=180°-58°×2=64°.点评:运用了平行线的性质,还要注意折叠的题目中,重合的两个角相等,结合平角的定义即可求解.6.故填52.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:根据平行线的性质,折叠变换的性质及邻补角的定义可直接解答.解答:解:∵该纸条是折叠的,∴∠1的同位角的补角=2×64°=128°;∵矩形的上下对边是平行的,∴∠1=∠1的同位角=180°-128°=52°.点评:本题主要考查平行线的性质:两直线平行,同位角相等;邻补角的定义;折叠变换的性质.7.故填55.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:利用平行线的性质和翻折变换的性质即可求得.解答:解:∵∠ABC=110°,纸条的上下对边是平行的,∴∠ABC的内错角=∠ABC=110°;∵是折叠得到的∠1,∴∠1=0.5×110°=55°.故填55.点评:本题应用的知识点为:两直线平行,内错角相等.8.故填65.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:根据两直线平行内错角相等,以及折叠关系列出方程求解则可.解答:解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.点评:本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.9.故填110°.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:如图,因为AB∥CD,所以∠BEM=∠1(两直线平行,内错角相等);根据折叠的性质可知∠3=∠4,可以求得∠4的度数;再根据两直线平行,同旁内角互补,即可求得∠2的度数.解答:解:∵AB∥CD,∴∠BEM=∠1=140°,∠2+∠4=180°,∵∠3=∠4,∴∠4=12∠BEM=70°,∴∠2=180°-70°=110°.点评:此题考查了折叠问题,注意折叠的两部分全等,即对应角与对应边相等.此题还考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.10.故填115°.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:根据折叠的性质及∠1=50°可求出∠2的度数,再由平行线的性质即可解答.解答:解:∵四边形EFGH是四边形EFBA折叠而成,∴∠2=∠3,∵∠2+∠3+∠1=180°,∠1=50°,∴∠2=∠3=12(180°-50°)=12×130°=65°,又∵AD∥BC,∴∠AEF+∠EFB=180°,∴∠AEF=180°-65°=115°.点评:解答此题的关键是明白折叠不变性:折叠前后图形全等.据此找出图中相等的角便可轻松解答.11.故答案为:40°.考点:三角形内角和定理;翻折变换(折叠问题).分析:利用三角形的内角和和四边形的内角和即可求得.解答:解:∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°-∠B)=360°,∴∠B=40°.故答案为:40°.点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.12.故阴影部分的面积为8cm2.考点:轴对称的性质.专题:压轴题.分析:正方形为轴对称图形,一条对称轴为其对角线;由图形条件可以看出阴影部分的面积为正方形面积的一半.解答:解:依题意有S阴影=12×4×4=8cm2,故阴影部分的面积为8cm2.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.13.答案为5个.考点:轴对称的性质.专题:压轴题;网格型.分析:根据轴对称图形的定义与判断可知.解答:解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△BCD,△BFH,△ADC,△AEF,△CGH.点评:本题考查轴对称图形的定义与判断,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.14.故答案为:8.考点:轴对称的性质.分析:根据轴对称的性质和三角形周长的定义可知.解答:解:根据题意点P关于OA、OB的对称点分别为C、D,故有MP=MC,NP=ND;则CD=CM+MN+ND=PM+MN+PN=8cm.故答案为:8.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.15.答案为18.考点:轴对称的性质.分析:根据图形的对称性,则阴影部分的面积即为正方形的面积的一半.解答:解:根据图形的对称性,知阴影部分的面积=正方形的面积的一半=12×6×6=18(cm2).点评:此题要能够利用正方形的对称性,把阴影部分的面积集中到一起进行计算.16.答案为1:2.考点:剪纸问题.专题:压轴题.分析:本题考查了拼摆的问题,仔细观察图形的特点作答.解答:解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正