二次函数与三角形的存在性问题的解法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P(x1,y),Q(x2,y)(1)线段对称轴是直线2x21xx(2)AB两点之间距离公式:221221)()(yyxxPQ中点公式:已知两点2211y,xQ,y,xP,则线段PQ的中点M为222121yy,xx。2、两直线的解析式为与22bxky如果这两直线互相垂直,则有121kk3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2:y=k2x+b2(1)当k1=k2,b1≠b2,L1∥L2(2)当k1≠k2,,L1与L2相交(3)K1×k2=-1时,L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。判定:有一个角是直角的三角形是直角三角形。3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。总结:(1)已知A、B两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上(2)已知A、B两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。(二)关于等腰三角形找点(作点)和求点的不同,1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图上找出存在点的个数,只找不求。2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分11bxky顶点进行讨论,如:已知两点A、B,在抛物线上求一点C,使得三角形ABC为等腰三角形解法:这是求点法:先运用两点间的距离公式分别求出线段ABBCAC的长度,第二步,作假设,(1)以点A为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即BA=BC(3)以点C为顶点的两条腰相等,即CA=CB第三步,根据以上等量关系,求出所求点的坐标第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。(三)关于直角三角形找点和求点的方法1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。2、具体方法(1)121kk;(2)三角形全等(注意寻找特殊角,如30°、60°、45°、90°)(3)三角形相似;经常利用一线三等角模型(4)勾股定理;当题目中出现了特殊角时,优先考虑全等法三、等腰三角形的例题解析例题1、(扬州)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.FF四、直角三角形存在性问题汇总例1、如图:A(0,1)B(4,3)是直线y=1/2x+1上的两点,点p是x轴上一点,若△ABP是直角三角形,则点p的坐标是多少?例2、(攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.例3、如图,抛物线与x轴交于A、B两点,与y轴交于点C(0,).在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形.22yxxk3例4、(东营)在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.(2018枣庄)(2018泰安)2018临沂2018潍坊

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功