传统的BP算法简述BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:(1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。(2)由给定的输入输出模式对计算隐层、输出层各单元输出(3)计算新的连接权及阀值,计算公式如下:(4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。第一步,网络初始化给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e,给定计算精度值和最大学习次数M。第二步,随机选取第k个输入样本及对应期望输出12()(),(),,()qkdkdkdkod12()(),(),,()nkxkxkxkx第三步,计算隐含层各神经元的输入和输出第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()oka第五步,利用隐含层到输出层的连接权值、输出层的()ok和隐含层的输出计算误差函数对隐含层各神经元的偏导数()hk第六步,利用输出层各神经元的()ok和隐含层各神经元的输出来修正连接权值()howk第七步,利用隐含层各神经元的()hk和输入层各神经元的输入修正连接权。第八步,计算全局误差2111(()())2qmookoEdkykm第九步,判断网络误差是否满足要求。当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。