电动力学A试卷第1页共4页一、填空题(每空2分,共32分)1、已知矢径r,则r=。2、已知矢量A和标量,则)(A。3、区域V内给定自由电荷分布、,在V的边界上给定或,则V内电场唯一确定。4、在迅变电磁场中,引入矢势A和标势,则E=,B=。5、麦克斯韦方程组的微分形式、、、。6、电磁场的能量密度为w=。7、库仑规范为。8、相对论的基本原理为,。9、电磁波在导电介质中传播时,导体内的电荷密度=。10、电荷守恒定律的数学表达式为。二、判断题(每题2分,共20分)1、由0E可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。()2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。()3、电磁波在波导管内传播时,其电磁波是横电磁波。()4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。()5、只要区域V内各处的电流密度0j,该区域内就可引入磁标势。()6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。()7、在0B的区域,其矢势A也等于零。()8、E、D、B、H四个物理量均为描述场的基本物理量。()9、由于AB,矢势A不同,描述的磁场也不同。()10、电磁波的波动方程012222EtvE适用于任何形式的电磁波。()三、证明题(每题9分,共18分)1、利用算符的矢量性和微分性,证明0)(r式中r为矢径,为任一标量。2、已知平面电磁波的电场强度itzcEE)sin(0,求证此平面电磁波的磁场强度为jtzccEB)sin(0四、计算题(每题10分,共30分)电动力学A试卷第2页共4页1、迅变场中,已知)cos(0trKAA,)cos(0trK,求电磁场的E和B。2、一长度为80厘米的杆,沿其长度方向以0.8c的速率相对观察者运动,求该杆首、尾端通过观察者时的时间间隔。3、在均匀外场0E中置入一半径为R的导体球,导体球带总电量为Q,求空间电势的分布。电动力学试题(A)答案一、填空题(每空2分,共32分)1、rr2、AA3、电势,电势的法线导数。4、tAEAB5、tBE,tDjH,D,0B6、)(21HBDE7、0A8、相对性原理,光速不变原理。9、010、0tj二、判断题(每题2分,共20分)1、×2、√3、×4、√5、√6、×7、×8、×9、√10、×三、证明题(每题9分,共18分)1、证明:rrr)()()(∵0r0∴0)(r电动力学A试卷第3页共4页2、证明:由麦克斯韦方程tBE,而00xEzyxkjiEkyEjzExxjtzcEc)cos(0所以jdttzcEcB)cos(0jtzccE)sin(0四、计算题(每题10分,共30分)1、解:tAE)sin()sin()]cos([)]cos([0000trKAtrKKtrKAttrKAB)sin()]cos([00trKKAtrKA2、解:2201cvllvcvlvlt2201c8.08.018.029100.2(s)3、解:建立球坐标系,原点在球心,z轴E0沿方向,求解空间为RR0,由于场具有轴对称性,电势满足拉普拉斯方程02(R0R)其解为(cos)(01nnnnnnPRBRA)电动力学A试卷第4页共4页边值关系为:00cosRER①0RR(待定)②SQdSR0③由①式得:0000cos)(cosnnnREPRA当n=0时00A当n=1时01EA当n≠0,1时0nA得2100)(coscosnnnnPRBRE由②式得:010000)(coscosnnnnPRBRE当n=0时000RB当n=1时0coscos20100RBRE由上两式解得:)(000RB0301ERB0Bn(n≠0,1)得coscos20300000RERRRRE由③得:oRRRER00cos30SQdSRE)cos3(0000000R4Q故得cos4cos2300000RRERQRE