1椭圆标准方程例题解析例1已知椭圆06322mymx的一个焦点为(0,2)求m的值.解:故5m.例2已知椭圆的中心在原点,且经过点03,P,ba3,求椭圆的标准方程.解:198122xy.例3ABC的底边16BC,AC和AB两边上中线长之和为30,求此三角形重心G的轨迹和顶点A的轨迹.分析:(1)由已知可得20GBGC,再利用椭圆定义求解.(2)由G的轨迹方程G、A坐标的关系,利用代入法求A的轨迹方程.解:(1)以BC所在的直线为x轴,BC中点为原点建立直角坐标系.设G点坐标为yx,,由20GBGC,知G点的轨迹是以B、C为焦点的椭圆,且除去轴上两点.因10a,8c,有6b,故其方程为013610022yyx.(2)设yxA,,yxG,,则013610022yyx.①由题意有33yyxx,代入①,得A的轨迹方程为0132490022yyx,其轨迹是椭圆(除去x轴上两点).例4已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为354和352,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:1103522yx或1510322yx.例5(记忆结论)已知椭圆方程012222babyax,长轴端点为1A,2A,焦点为1F,2F,P是椭圆上一点,21PAA,21PFF.求:21PFF的面积(用a、b、表示).分析:求面积要结合余弦定理及定义求角的两邻边,从而利用CabSsin21求面积.解:如图,设yxP,,由椭圆的对称性,不妨设yxP,,由椭圆的对称性,不妨设P在第一象限.由余弦定理知:221FF2221PFPF12PF·224coscPF.①2由椭圆定义知:aPFPF221②,则-①②2得cos12221bPFPF.故sin212121PFPFSPFFsincos12212b2tan2b.例6已知动圆P过定点03,A,且在定圆64322yxB:的内部与其相内切,求动圆圆心P的轨迹方程.分析:关键是根据题意,列出点P满足的关系式.解:如图所示,设动圆P和定圆B内切于点M.动点P到两定点,即定点03,A和定圆圆心03,B距离之和恰好等于定圆半径,即8BMPBPMPBPA.∴点P的轨迹是以A,B为两焦点,半长轴为4,半短轴长为73422b的椭圆的方程:171622yx.例7已知椭圆1222yx,(1)求过点2121,P且被P平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过12,A引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点P、Q,O为原点,且有直线OP、OQ斜率满足21OQOPkk,求线段PQ中点M的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为11yxM,,22yxN,,线段MN的中点yxR,,则④,③,②,①,yyyxxxyxyx222222212122222121①-②得0221212121yyyyxxxx.由题意知21xx,则上式两端同除以21xx,有0221212121xxyyyyxx,将③④代入得022121xxyyyx.⑤(1)将21x,21y代入⑤,得212121xxyy,故所求直线方程为:0342yx.⑥将⑥代入椭圆方程2222yx得041662yy,0416436符合题意,0342yx为所求.(2)将22121xxyy代入⑤得所求轨迹方程为:04yx.(椭圆内部分)3(3)将212121xyxxyy代入⑤得所求轨迹方程为:022222yxyx.(椭圆内部分)(4)由①+②得:2222212221yyxx,⑦,将③④平方并整理得212222124xxxxx,⑧,212222124yyyyy,⑨将⑧⑨代入⑦得:224424212212yyyxxx,⑩再将212121xxyy代入⑩式得:221242212212xxyxxx,即12122yx.此即为所求轨迹方程.例8已知椭圆1422yx及直线mxy.(1)当m为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.解:(1)把直线方程mxy代入椭圆方程1422yx得1422mxx,即012522mmxx.020161542222mmm,解得2525m.(2)设直线与椭圆的两个交点的横坐标为1x,2x,由(1)得5221mxx,51221mxx.根据弦长公式得:51025145211222mm.解得0m.方程为xy.说明:对比直线与椭圆和直线与圆的位置关系问题及有关弦长问题的解题方法?.这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式.例9以椭圆131222yx的焦点为焦点,过直线09yxl:上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.4解:如图所示,椭圆131222yx的焦点为031,F,032,F.点1F关于直线09yxl:的对称点F的坐标为(-9,6),直线2FF的方程为032yx.解方程组09032yxyx得交点M的坐标为(-5,4).此时21MFMF最小.所求椭圆的长轴:562221FFMFMFa,∴53a,又3c,∴3635322222cab.因此,所求椭圆的方程为1364522yx.例10已知方程13522kykx表示椭圆,求k的取值范围.解:由,35,03,05kkkk得53k,且4k.∴满足条件的k的取值范围是53k,且4k.说明:本题易出现如下错解:由,03,05kk得53k,故k的取值范围是53k.出错的原因是没有注意椭圆的标准方程中0ba这个条件,当ba时,并不表示椭圆.例11已知1cossin22yx)0(表示焦点在y轴上的椭圆,求的取值范围.分析:依据已知条件确定的三角函数的大小关系.再根据三角函数的单调性,求出的取值范围.解:方程可化为1cos1sin122yx.因为焦点在y轴上,所以0sin1cos1.因此0sin且1tan从而)43,2(.说明:(1)由椭圆的标准方程知0sin1,0cos1,这是容易忽视的地方.(2)由焦点在y轴上,知cos12a,sin12b.(3)求的取值范围时,应注意题目中的条件0.例12求中心在原点,对称轴为坐标轴,且经过)2,3(A和)1,32(B两点的椭圆方程.分析:可设其方程为122nymx(0m,0n),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:151522yx.例13知圆122yx,从这个圆上任意一点P向y轴作垂线段,求线段中点M的轨迹.5解:1422yx.说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为),(yx,设已知轨迹上的点的坐标为),(00yx,然后根据题目要求,使x,y与0x,0y建立等式关系,从而由这些等式关系求出0x和0y代入已知的轨迹方程,就可以求出关于x,y的方程,化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例14已知长轴为12,短轴长为6,焦点在x轴上的椭圆,过它对的左焦点1F作倾斜解为3的直线交椭圆于A,B两点,求弦AB的长.解:(法1)利用直线与椭圆相交的弦长公式求解.1348]4))[(1(1212212212xxxxkxxkAB.(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622yx,设mAF1,nBF1,则mAF122,nBF122.在21FAF中,3cos22112212122FFAFFFAFAF,即21362336)12(22mmm;所以346m.同理在21FBF中,用余弦定理得346n,所以1348nmAB.(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132xx求出方程的两根1x,2x,它们分别是A,B的横坐标.再根据焦半径11exaAF,21exaBF,从而求出11BFAFAB.例15已知椭圆13422yxC:,试确定m的取值范围,使得对于直线mxyl4:,椭圆C上有不同的两点关于该直线对称.分析:若设椭圆上A,B两点关于直线l对称,则已知条件等价于:(1)直线lAB;(2)弦AB的中点M在l上.利用上述条件建立m的不等式即可求得m的取值范围.解:(法1)设椭圆上),(11yxA,),(22yxB两点关于直线l对称,直线AB与l交于),(00yxM点.∵l的斜率4lk,∴设直线AB的方程为nxy41.由方程组,134,4122yxnxy消去y得0481681322nnxx①。∴13821nxx.于是1342210nxxx,13124100nnxy,即点M的坐标为)1312,134(nn.∵点M在直线mxy4上,∴mnn1344.解得mn413.②将式②代入式①得048169261322mmxx③6∵A,B是椭圆上的两点,∴0)48169(134)26(22mm.解得1313213132m.(法2)同解法1得出mn413,∴mmx)413(1340,mmmmxy3413)(414134100,即M点坐标为)3,(mm.∵A,B为椭圆上的两点,∴M点在椭圆的内部,∴13)3(4)(22mm.解得1313213132m.(法3)设),(11yxA,),(22yxB是椭圆上关于l对称的两点,直线AB与l的交点M的坐标为),(00yx.∵A,B在椭圆上,∴1342121yx,1342222yx.两式相减得0))((4))((321212121yyyyxxxx,即0)(24)(23210210yyyxxx.∴)(4321002121xxyxxxyy.又∵直线lAB,∴1lABkk,∴144300yx,即003xy①。又M点在直线l上,∴mxy004②。由①,②得M点的坐标为)3,(mm.以下同解法2.说明:涉及椭圆上两点A,B关于直线l恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(1)利用直线AB与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式0,建立参数方程.(2)利用弦AB的中点),(00yxM在椭圆内部,满足12020byax,将0x,0y利用参数表示,建立参数不等式.例16在面积为1的PMN中,21tanM,2tanN,建立适当的坐标系,求出以M、N为焦点且过P点的椭圆方程.解:以MN的中点为原点,MN所在直线为x轴建立直角坐标系,设),(yxP.则.1,21,2cycxycxy∴233