1.4对数的运算0,10aaNbR且知识回顾性质:log1.aNaa3.log10a4.log1aananalog.2)(RnNaa,0,1,0(,)(,)()(,)()()mnmnmmnnmnmnnnnaaamnRaamnRaaamnRababnR指数运算法则:logaMlogaN=?+设,logpMa,logqNa由对数的定义可以得:,paMqaN∴pqaapqalogaMNpq即得MNMNaaaloglogMlogN积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa证明:③设,logpMa由对数的定义可以得:,paM∴npnaMnpMnalog即证得)(3R)M(nnlogMlogana上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式。)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa①简易语言表达:“积的对数=对数的和”……②有时逆向运用公式③真数的取值范围必须是),0(④对公式容易错误记忆,要特别注意:,loglog)(logNMMNaaaNMNMaaaloglog)(log例1解(1)解(2)用,logxa,logyazalog表示下列各式:23;(2)log(1)logaaxyxyzzzxyzxyaaalog)(loglog3121232log)(loglogzyxzyxaaazyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log23logaxyz234logaxyz1logloglog211logloglog2342aaaaaaxyzxyz解:(3)原式()原式=+-(1)18lg7lg37lg214lg例2计算:解法一:18lg7lg37lg214lg18lg7lg)37lg(14lg218)37(714lg201lg)32lg(7lg37lg2)72lg(2)3lg22(lg7lg)3lg7(lg27lg2lg018lg7lg37lg214lg解法二:自然对数NNlglog10常用对数...)71828.2(lnlogeNNe(2)9lg243lg3lg23lg525解:1023lg)10lg(32lg)3lg(2.1lg10lg38lg27lg)3(2213213253lg3lg9lg243lg)2(2.1lg10lg38lg27lg)3(12lg23lg)12lg23(lg2323253lg3lg9lg243lg)2(练习(1)(4)(3)(2)1.求下列各式的值:15log5log332lg5lg31log3log553log6log2236log22log21)25lg(10lg1)313(log51log50155log3133log1小结:积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa1.用lgx,lgy,lgz表示下列各式:作业(1)(4)(3)(2))lg(xyzzxy2lgzxy3lgzyx2lg2.求下列各式的值);416(log132)(;4log12log233)(;51lg5lg32lg43)(.5lg20lg2lg42)(