第1页(共21页)2016年四川省成都市高考数学三诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2B.4C.6D.82.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<xB.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥xD.∃x0∈(﹣1,+∞),ln(x0+1)≥x03.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3B.C.2D.14.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B.C.D.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()第2页(共21页)A.B.C.0.6﹣2D.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144B.132C.96D.489.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°=.12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.第3页(共21页)15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f(x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;②存在x0∈(,),使f(x0)<tanx0成立;③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有(写出所有正确命题的序号).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力人数逻辑思维能力一般良好优秀一般221良好4m1优秀13n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;第4页(共21页)(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.19.已知数列{an}的前n项和为Sn,且3Sn+an﹣3=0,n∈N*.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=,求Tn=,求使Tn≥成立的n的最小值.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.21.已知函数f(x)=ex,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h(x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.第5页(共21页)2016年四川省成都市高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2B.4C.6D.8【考点】分层抽样方法.【分析】先求出每个个体被抽到的概率,再用女运动员的人数乘以此概率,即得所求.【解答】解:每个个体被抽到的概率等于=,则样本中女运动员的人数为42×=6.故选:C.2.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<xB.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥xD.∃x0∈(﹣1,+∞),ln(x0+1)≥x0【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵全称命题的否定是特称命题,∴命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是:“∃x0∈(﹣1,+∞),ln(x0+1)≥x0”,故选:D.3.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3B.C.2D.1【考点】复数求模.【分析】利用复数代数形式的乘除运算化简,然后代入复数模的公式得答案.【解答】解:∵z=﹣i=,∴|z|=.故选:A.4.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.第6页(共21页)【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由平面与平面垂直的判定定理知如果m为平面β内的一条直线,且m⊥α,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥α,所以不一定能得到m⊥α,所以“α⊥β”是“m⊥α”的必要不充分条件.故选B.5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据平面向量数量积的定义与投影的定义,进行计算即可.【解答】解:∵||=2,•(﹣)=﹣3,∴•﹣=•﹣22=﹣3,∴•=1,∴向量在方向上的投影为=.故选:C.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元【考点】简单线性规划.【分析】根据条件建立不等式组即线性目标函数,利用图象可求该厂的日利润最大值.【解答】解:设甲、乙两种产品分别生产x、y件,工厂获得的利润为z又已知条件可得二元一次不等式组:第7页(共21页)目标函数为z=3x+4y,由,可得,利用线性规划可得x=6,y=1时,此时该厂的日利润最大为z=3×6+4=22万元,故选:B.7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2D.【考点】程序框图.【分析】模拟执行程序,可得该流程图的作用是求出m、n、p中的最小数,化简比较三个数即可得解.【解答】解:根据题意,该流程图的作用是求出m、n、p中的最小数,并将此最小的数用变量x表示并输出,由于,m==,n=0.6﹣2=,p==,第8页(共21页)可得,>>,即:n>m>p.故选:A.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144B.132C.96D.48【考点】计数原理的应用.【分析】分类讨论:甲选花卷,则有2人选同一种主食,剩下2人选其余主食;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,有1人选甲选的主食,剩下2人选其余主食,或没有人选甲选的主食,相加后得到结果【解答】解:分类讨论:甲选花卷,则有2人选同一种主食,方法为C42C31=18,剩下2人选其余主食,方法为A22=2,共有方法18×2=36种;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3A22=6;若没有人选甲选的主食,方法为C32A22=6,共有4×2×(6+6)=96种,故共有36+96=132种,故选:B.9.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.【考点】函数零点的判定定理.【分析】根据题中的条件得到函数的解析式为:f(x)=3m+1﹣x,x∈(3m,3m+1],在直角坐标系中画出f(x)的图象和直线y=k(x﹣1),根据函数的图象、题意、斜率公式求出实数k的范围.【解答】解:因为对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立,所以f(t)=