第1页共44页2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算yxyxxyyxDdd1)1ln()(____________,其中区域D由直线1yx与两坐标轴所围成三角形区域.解:令vxuyx,,则vuyvx,,vuvuyxdddd1110detdd,vuuvuuuyxyxxyyxDDdd1lnlndd1)1ln()(1021000d1)ln(1lnd)dln1d1ln(uuuuuuuuuuvvuuvuuuuu102d1uuu(*)令ut1,则21tudt2dtu,42221ttu,)1)(1()1(2tttuu,0142d)21(2(*)ttt1042d)21(2ttt1516513221053ttt2.设)(xf是连续函数,且满足2022d)(3)(xxfxxf,则)(xf____________.解:令20d)(xxfA,则23)(2Axxf,AAxAxA24)2(28d)23(202,解得34A。因此3103)(2xxf。第2页共44页3.曲面2222yxz平行平面022zyx的切平面方程是__________.解:因平面022zyx的法向量为)1,2,2(,而曲面2222yxz在),(00yx处的法向量为)1),,(),,((0000yxzyxzyx,故)1),,(),,((0000yxzyxzyx与)1,2,2(平行,因此,由xzx,yzy2知0000002),(2,),(2yyxzxyxzyx,即1,200yx,又5)1,2(),(00zyxz,于是曲面022zyx在)),(,,(0000yxzyx处的切平面方程是0)5()1(2)2(2zyx,即曲面2222yxz平行平面022zyx的切平面方程是0122zyx。4.设函数)(xyy由方程29ln)(yyfexe确定,其中f具有二阶导数,且1f,则22ddxy________________.解:方程29ln)(yyfexe的两边对x求导,得29ln)()()(yeeyyfxeyyfyf因)(29lnyfyxee,故yyyfx)(1,即))(1(1yfxy,因此2222)](1[)())(1(1ddyfxyyfyfxyxy322232)](1[)](1[)())(1(1)](1[)(yfxyfyfyfxyfxyf二、(5分)求极限xenxxxxneee)(lim20,其中n是给定的正整数.解:因xenxxxxxenxxxxnneeeneee)1(lim)(lim2020故nxneeeexenneeeAnxxxxnxxxx2020limlimennnenneeeenxxxx21212lim20因此第3页共44页enAxenxxxxeeneee2120)(lim三、(15分)设函数)(xf连续,10d)()(txtfxg,且Axxfx)(lim0,A为常数,求)(xg并讨论)(xg在0x处的连续性.解:由Axxfx)(lim0和函数)(xf连续知,0)(limlim)(lim)0(000xxfxxffxxx因10d)()(txtfxg,故0)0(d)0()0(10ftfg,因此,当0x时,xuufxxg0d)(1)(,故0)0(1)(limd)(lim)(lim0000fxfxuufxgxxxx当0x时,xxfuufxxgx)(d)(1)(02,200000d)(limd)(1lim)0()(lim)0(xttfxttfxxgxggxxxxx22)(lim0Axxfx22d)(1lim)(lim])(d)(1[lim)(lim02000200AAAuufxxxfxxfuufxxgxxxxxx这表明)(xg在0x处连续.四、(15分)已知平面区域}0,0|),{(yxyxD,L为D的正向边界,试证:(1)LxyLxyxyeyxexyeyxeddddsinsinsinsin;(2)2sinsin25ddLyyxyeyxe.证:因被积函数的偏导数连续在D上连续,故由格林公式知(1)yxyeyxexxyeyxeDxyLxydd)()(ddsinsinsinsinyxeeDxydd)(sinsinLxyxyeyxeddsinsinyxyeyxexDxydd)()(sinsinyxeeDxydd)(sinsin第4页共44页而D关于x和y是对称的,即知yxeeDxydd)(sinsinyxeeDxydd)(sinsin因此LxyLxyxyeyxexyeyxeddddsinsinsinsin(2)因)1(2)!4!21(2242ttteett故22cos522cos12sin22sinsinxxxeexx由DxyLDxyyyyxeeyxeexyeyxedd)(dd)(ddsinsinsinsinsinsin知DxyLDxyyyyxeeyxeexyeyxedd)(21dd)(21ddsinsinsinsinsinsinDxxDxxDyyyxeeyxeeyxeedd)(dd)(21dd)(21sinsinsinsinsinsin200sinsin25d22cos5d)(xxxeexx即2sinsin25ddLyyxyeyxe五、(10分)已知xxexey21,xxexey2,xxxeexey23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设xxexey21,xxexey2,xxxeexey23是二阶常系数线性非齐次微分方程)(xfcyyby的三个解,则xxeeyy212和xeyy13都是二阶常系数线性齐次微分方程0cyyby的解,因此0cyyby的特征多项式是0)1)(2(,而0cyyby的特征多项式是02cb因此二阶常系数线性齐次微分方程为02yyy,由)(2111xfyyy和xxxexeey212,xxxexeey2142知,1112)(yyyxf)(2)2(42222xxxxxxxxexeeexeeexexex)21(第5页共44页二阶常系数线性非齐次微分方程为xxxeeyyy22六、(10分)设抛物线cbxaxyln22过原点.当10x时,0y,又已知该抛物线与x轴及直线1x所围图形的面积为31.试确定cba,,,使此图形绕x轴旋转一周而成的旋转体的体积最小.解因抛物线cbxaxyln22过原点,故1c,于是2323dt)(311023102baxbxabxax即)1(32ab而此图形绕x轴旋转一周而成的旋转体的体积10221022dt))1(32(dt)()(xaaxbxaxaV10221031042dt)1(94dt)1(34dtxaxaaxa22)1(274)1(3151aaaa即22)1(274)1(3151)(aaaaaV令0)1(278)21(3152)(aaaaV,得04040904554aaa即054a因此45a,23b,1c.七、(15分)已知)(xun满足),2,1()()(1nexxuxuxnnn,且neun)1(,求函数项级数1)(nnxu之和.第6页共44页解xnnnexxuxu1)()(,即xnexyy1由一阶线性非齐次微分方程公式知)d(1xxCeynx即)(nxCeynx因此)()(nxCexunxn由)1()1(nCeunen知,0C,于是nexxuxnn)(下面求级数的和:令11)()(nxnnnnexxuxS则xexSexxSnexexxSxnxnnxnxn1)()()()(1111即xexSxSx1)()(由一阶线性非齐次微分方程公式知)d11()(xxCexSx令0x,得CS)0(0,因此级数1)(nnxu的和)1ln()(xexSx八、(10分)求1x时,与02nnx等价的无穷大量.解令2)(txtf,则因当10x,(0,)t时,2()2ln0tfttxx,故xttextf1ln22)(在(0,)上严格单调减。因此第7页共44页1010001()d()d()(0)()d1()dnnnnnnnfttfttfnffttftt即000()d()1()dnfttfnftt,又200()nnnfnx,111lim11lnlim11xxxxx21ln1d1ln1ddd)(001ln00222xtextetxttftxtt,所以,当1x时,与02nnx等价的无穷大量是x121。2010年第二届全国大学生数学竞赛预赛试卷(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。)一、(25分,每小题5分)(1)设22(1)(1)(1),nnxaaa其中||1,a求lim.nnx(2)求21lim1xxxex。(3)设0s,求0(1,2,)sxnIexdxn。(4)设函数()ft有二阶连续导数,221,(,)rxygxyfr,求2222ggxy。第8页共44页(5)求直线10:0xylz与直线2213:421xyzl的距离。解:(1)22(1)(1)(1)nnxaaa=22(1)(1)(1)(1)/(1)nnxaaaaa=222(1)(1)(1)/(1)naaaa==12(1)/(1)naa12limlim(1)/(1)1/(1)nnnnxaaa(2)22211ln(1)ln(1)1lim1limlimxxxexxxxxxxxeeex令x=1/t,则原式=21(ln(1))1/(1)112(1)22000limlimlimttttttttteeee(3)0000112021011()()[|](1)!!sxnnsxnsxsxnnsxnnnnnIexdxxdexeedxssnnnnnnexdxIIIsssss二、(15分)设函数()fx在(,)上具有二阶导数,并且()0,lim()0,lim()0,xxfxfxfx