第六单元方程与方程组第一节一元一次方程课标解读考试内容考试要求考查频度ABC一元一次方程了解一元一次方程的有关概念能解一元一次方程运用方程与不等式的有关内容解决有关问题★★知识要点1.方程化为最简形式后,只含有未知数,并且含有未知数的项的次数是的方程叫一元一次方程,形如ax+b=0(其中x是未知数,a,b是已知数,并且a≠0).2.使方程左右两边的值相等的的值,叫方程的解(根).3.解一元一次方程的一般步骤:①,②去括号,③(移项要变号),④,⑤化未知数的系数为1,这里的顺序可视具体题目而定.典例诠释考点一一元一次方程的解例1(2015·四川甘孜)已知关于x的方程3a-x=+3的解为2,则代数式-2a+1的值是.【答案】1【名师点评】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.先把x=2代入方程求出a的值,再把a的值代入代数式进行计算即可.考点二解一元一次方程例2(2015·济南)若代数式4x-5与的值相等,则x的值是()A.1B.C.D.2【答案】B【名师点评】此题考查了解一元一次方程,其步骤为:去分母、去括号、移项、合并同类项、把未知数的系数化为1,求出解.根据题意列出方程,求出方程的解即可得到x的值.考点三列方程解应用题例3(2016·聊城)在如图1-6-1的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()图1-6-1A.27B.51C.69D.72【答案】D【名师点评】此题主要考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.例4(2016·绥化)一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30-x)-2B.x+1=(15-x)-2C.x-1=(30-x)+2D.x-1=(15-x)+2【答案】D【名师点评】本题考查了由实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.考点四与不等式综合例5(2016·菏泽)当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1B.1C.3D.-3【答案】B【名师点评】此题考查的知识点是代数式求值及去绝对值符号,解题的关键是根据a的取值,先去绝对值符号,再计算求值.基础精练1.(2016·朝阳一模)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为.【答案】x+x+x=652.(2016·门头沟一模)某地中国移动“全球通”与“神州行”收费标准如下表:品牌月租费本地话费(元/分钟)长途话费(元/分钟)全球通13元0.350.15神州行0元0.600.30如果小明每月拨打本地电话时间是长途电话时间的2倍,且每月总通话时间在65~70分钟之间,那么他选择较为省钱(填“全球通”或“神州行”).【答案】全球通3.(2016·怀柔一模)李白(701年—762年),唐代伟大的浪漫主义诗人,被后人誉为“诗仙”.李白的一生和酒有着不解之缘,写下了如《将进酒》这样的千古绝句.古代民间流传着这样一道算题:李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒;试问酒壶中,原有多少酒?意思是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次看见花店就喝去一斗(斗是古代容量单位,1斗=10升),这样遇到酒店、看见花店各三次.把酒喝完.问壶中原来有酒多少?设壶中原来有酒x斗,可列方程为.【答案】[(2x-1)×2-1]×2-1=0或8x-7=04.(2016·海淀一模)油电混动汽车是一种节油、环保的新技术汽车,它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.4815.98每百公里燃油成本(元)3146某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5000B.10000C.15000D.20000【答案】B5.(2016·延庆一模)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知生产100瓶A、B两种饮料中,共添加270克该添加剂,问A、B两种饮料各生产了多少瓶?【解】设A种饮料生产x瓶,则B种饮料生产(100-x)瓶.根据题意,得2x+3(100-x)=270,解得x=30.100-30=70.答:A种饮料生产了30瓶,B种饮料生产了70瓶.6.(2016·石景山一模)某校组织“衫衫来了,爱心义卖”活动,购进了黑白两种纯色的文化衫共200件,进行DIY手绘设计后出售,所获利润全部捐给“太阳村”.每种文化衫的成本和售价如下表:白色文化衫黑色文化衫成本(元)68售价(元)2025假设文化衫全部售出,共获利3040元,求购进两种文化衫各多少件?【解】设购进白色文化衫x件,则购进黑色文化衫(200-x)件.根据题意,得(20-6)x+(25-8)(200-x)=3040,解得x=120,200-x=80.答:购进白色文化衫120件,黑色文化衫80件.真题演练1.(2016·北京)百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.图1-6-2【答案】5052.(2016·广东梅州)用一条长40cm的绳子围成一个面积为64的矩形.设矩形的一边长为xcm,则可列方程为.【答案】x(20-x)=643.(2016·广西贺州)解方程:=5.【解】去分母,得2x-3(30-x)=60.去括号,得2x-90+3x=60.移项、合并同类项,得5x=150.系数化为1,得x=30.4.(2016·大连)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【解】设甲车的速度是x千米/时,则乙车的速度为(x+30)千米/时,根据题意,得80(x+30)=x(200-80),解得x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.5.(2016·湖北黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【解】设八年级收到的征文有x篇,则七年级收到的征文有篇,根据题意,得+x=118,解得x=80.则118-80=38.答:七年级收到的征文有38篇.第二节一元二次方程课标解读考试内容考试要求考查频度ABC一元二次方程了解一元二次方程的有关概念;理解配方法;会用一元二次方程根的判别式判断方程根的情况能用适当的方法解数字系数的一元二次方程;能用根的判别式解决与一元二次方程根有关的问题★★★知识要点1.等号的两边都是,只含有一个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.2.一元二次方程的一般形式是,其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数;叫做常数项.3.利用一元二次方程的求根公式x=,求出一元二次方程+bx+c=0(a≠0)的解的方法,叫做公式法.4.先使一元二次方程化为两个一次式的乘积等于的形式,再使这两个一次式分别等于,从而实现降次,这种解法叫做因式分解法.5.当时,一元二次方程+bx+c=0(a≠0)有两个不相等的实数根;当时,一元二次方程+bx+c=0(a≠0)有两个相等的实数根;当时,一元二次方程+bx+c=0(a≠0)没有实数根.典例诠释考点一解一元二次方程例1(2016·扬州)已知M=a-1,a(a为任意实数),则M、N的大小关系为()A.M<NB.M=NC.M>ND.不能确定【答案】A【名师点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.将M与N代入N-M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.考点二根的判别式例2(2016·自贡)已知关于x的一元二次方程+2x-(m-2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤1【答案】C【名师点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,Δ≥0.由关于x的一元二次方程+2x-(m-2)=0有实数根,可知Δ≥0,从而可以求得m的取值范围.例3(2016·衡阳)关于x的一元二次方程+4x+k=0有两个相等的实根,则k的值为()A.k=-4B.k=4C.k≥-4D.k≥4【答案】B【名师点评】本题考查了一元二次方程+bx+c=0(a≠0)的根的判别式-4ac:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.根据判别式的意义得到-4k=0,然后解一次方程即可.考点三根与系数的关系例4(2016·枣庄)已知关于x的方程+3x+a=0有一个根为-2,则另一个根为()A.5B.-1C.2D.-5【答案】B【名师点评】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.根据关于x的方程+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值.考点四一元二次方程的应用例5(2016·台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x-1)=45B.x(x+1)=45C.x(x-1)=45D.x(x+1)=45【答案】A【名师点评】此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为x(x-1)=45.基础精练1.(2016·朝阳一模)关于x的方程+2x+2k-4=0有两个不相等实数根,写出一个满足条件的k的值:k=.【答案】k=12.(2016·丰台一模)关于x的一元二次方程-1=0有实数根,则实数m的取值范围是.【答案】m≥-13.(2016·丰台一模)小明同学用配方法推导关于x的一元二次方程+bx+c=0的求根公式时,对于-4ac0的情况,他是这样做的:小明的解法从第步开始出现错误;这一步的运算依据应是.【答案】四;平方根的定义4.(2015·朝阳一模)已知关于x的一元二次方程-6x+k+3=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【解】-4(k+3)=36-4k-12=-4k+24.∵原方程有两个不相等的实数根,∴-4k+24>0,解得k<6.(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程为-6x+7=0其根不是整数.∴k=4不符合题意.②当k=5时,方