八年级数学上册-知识点总结(北师大版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《数学》(八年级上册)知识点总结(北师大版)1《数学》(八年级上册)知识点总结(北师大版)第一章勾股定理1、勾股定理-----已知直角三角形,得边的关系直角三角形两直角边a,b的平方和等于斜边c的平方,即222cba2、勾股定理的逆定理-----由边的关系,判断直角三角形如果三角形的三边长a,b,c有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数a,b,c,称为勾股数。常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1)、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。即当a为奇数且a<b时,如果2bca,那么a,b,c就是一组勾股数.如:(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n>1)都可构成一组勾股数分别是:222,1,1nnn如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积……(3)判定三角形形状:222abc锐角三角形,222abc直角三角形,222abc钝角三角形判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状第二章实数1.无理数的引入。无理数的定义无限不循环小数。《数学》(八年级上册)知识点总结(北师大版)220200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为xaxaxaaaaxaaaxaxaxaa30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。一、实数的概念及分类1、实数的分类无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0负实数正实数实数0《数学》(八年级上册)知识点总结(北师大版)32、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等根号a(a为非完全平方数或非立方数)。(2)有特定意义的数,如圆周率π(π=3.14159265…),或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…;0.585885888588885……(相邻两个5之间8的个数逐次加1等;(4)某些三角函数值,如sin60o等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。《数学》(八年级上册)知识点总结(北师大版)4解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12732.13236.25.三、平方根、算数平方根和立方根1.平方根和算术平方根:(1)概念:如果2xa,那么x是a的平方根,记作:a;读作“正、负根号a”,其中a叫做a的算术平方根,读作根号a。(2)性质:①当a≥0时,a≥0;当a<0时,a无意义;②2a=a;③2aa。(区分②、③)性质:正数和零的算术平方根都只有一个,零的算术平方根是零。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。(3)开平方:求一个数a的平方根的运算,叫做开平方。注意:a的双重非负性:00aa(开平方的被开方数的条件)(算术平方根的非负性)2.立方根:(1)概念:若3xa,那么x是a的立方根(或三次方根),记作:3a;(2)性质:①33aa;②33aa;③3a=3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。区分:平方根、立方根的性质根源:开平方是平方的逆运算;开立方是立方的逆运算。正数和负数的平方后为正,所以,只有非负数才可以开平方,因此一个非0正数开平方后有2个;而任何数的立方后的符号与原数的符号一致,所以,任何数都可以开立方,一个数开立方后只有1个,符号与原数的符号也一致。四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右《数学》(八年级上册)知识点总结(北师大版)5边的总比左边的大;两个负数,绝对值大的反而小。在数轴上,右边的点表示的数比左边的点表示的数大。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,,0baba,0babababa0(3)求商比较法:设a、b是两正实数,;1;1;1babababababa(4)绝对值比较法:设a、b是两负实数,则baba。(5)平方法:①设0,0ab,则22abab②设0,0ab,则baba22。③同号的有理数与无理数、同号的无理数与无理数大小比较时常用平方法。如:比较362与3.4;36与53(6)倒数法:设0,0ab,则11abab;设0,0ab,则11abab规律:同号取倒(数)反向五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数,即:0aa中。2、性质:(1)非负性0a(2))0()(2aaa(2a中前提,被开方数0a)(3)aa2,(0),(0)aaaa(2a中隐含被开方数20a)(4))0,0(babaab;()0,0(baabba)(前提根号要有意义)《数学》(八年级上册)知识点总结(北师大版)6(5))0,0(bababa;()0,0(bababa)(前提式子和根号要有意义,)拓展:三个重要非负数:20,0,0aaa.注意:非负数之和为0它们都是0.3、运算结果若含有“a”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律abba加法结合律)()(cbacba乘法交换律baab乘法结合律)()(bcacab乘法对加法的分配律acabcba)((4)与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。第三章位置的确定一、在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标《数学》(八年级上册)知识点总结(北师大版)7四三二一0xy0xyPab(+,-)(-,-)(-,+)(+,+)0xyBACDx2y2x3y3y1x1x4y40xyA(x1,0)D(0,y4)B(0,y2)C(x3,0)45°45°0xyBACD轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征(结合图形,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数,xy在坐标轴的正向为正,负向为负)点11(,)Axy在第一象限110,0xy点22(,)Bxy在第二象限220,0xy点33(,)Cxy在第三象限330,0xy点44(,)Dxy在第四象限440,0xy(2)、坐标轴上的点的特征点P(x,y)在x轴上0y,x为任意实数点P(x,y)在y轴上0x,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征《数学》(八年级上册)知识点总结(北师大版)80xyFEGH位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特征①点P与点'P关于x轴对称(上下)横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为'P(x,-y)②点P与点'P关于y轴对称(左右)纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为'P(-x,y)③点P与点'P关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为'P(-x,-y)规律:关于谁对称谁不变,另一个变相反;关于原点对称,两个分别变相反。(6)、点到坐标轴及原点的距离(结合图形理解)点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx(由勾股定理可得)三、坐标变化与图形变化的规律:坐标(x,y)的变化图形的变化x×a或y×a被横向或纵向拉长(压缩)为原来的a倍x×a,y×a放大(缩小)为原来的a倍x×(-1)或y×(-1)关于y轴或x轴对称x×(-1),y×(-1)关于原点成中心对称xa或ya,其中

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功