练习一1,如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……2,“数学趣味题数学趣味题……”依次重复排列,第41个字是什么?3,把38面小三角旗按下图排列,其中有多少面白旗?练习二1,2001年5月3日是星期四,5月20日是星期几?2,2001年8月1日是星期三,8月28日是星期几?3,2001年6月1日是星期五,9月1日是星期几?练习三1,23个3相乘,积的个位数字是几?2,100个2相乘,积的个位数字是几?3,50个3相乘,积的个位数字是几?练习四1,一列数按“294736294736294……”排列,那么前20个数字之和是多少?2,有一列数按“9453672945367294……”排列,那么前20个数字之和是多少?3,有一列数“7231652316523165……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?练习五1,校门口摆了一排花,每两盆菊花之间摆3盆月季,共摆了112盆花。如果第一盆花是菊花,那么共摆了多少盆月季花?2,同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?3,一个圆形花辅周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗。花辅周围共插了多少面黄旗?小学四年级奥数第五讲找规律(一)一、知识要点按照一定次序排列起来的一列数,叫做数列。如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。善于发现数列的规律是填数的关键。二、精讲精练【例题1】在括号内填上合适的数。(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。(1)510914712111691413(3)练习4:找出排列规律,在空缺处填上适当的数。(1)(3)【例题5】按规律填数。(1)187,286,385,(),()(2)练习5:根据规律,在空格内填数。(1)198,297,396,(),()(2)(3)(2)94371484281649327124363612375981210141216148416168323216645151272118927(2)4892768287233125414123464335243254386421452665325737253895234527753425找规律(二)一、知识要点观察是解决问题的根据。通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或16-3=13。像上面按照一定的顺序排列的一串数叫做数列。练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。1,2,4,7,(),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。由此可以推算7比括号里的数少4,括号里应填:7+4=11。经验证,所填的数是正确的。应填的数为:7+4=11或16-5=11。练习2:先找出下列数排列的规律,然后在括号里填上适当的数。(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8(5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14【例题3】先找出规律,然后在括号里填上适当的数。23,4,20,6,17,8,(),(),11,12【思路导航】在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的差是第五个数,第四个数加上2的和是第六个数……依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=10练习3:先找出规律,然后在括号里填上适当的数。(1)1,6,5,10,9,14,13,(),()(2)13,2,15,4,17,6,(),()(3)3,29,4,28,6,26,9,23,(),(),18,14(4)21,2,19,5,17,8,(),()(5)32,20,29,18,26,16,(),(),20,12(6)2,9,6,10,18,11,54,(),(),13,486(7)1,5,2,8,4,11,8,14,(),()(8)320,1,160,3,80,9,40,27,(),()【例题4】在数列1,1,2,3,5,8,13,(),34,55……中,括号里应填什么数?【思路导航】经仔细观察、分析,不难发现:从第三个数开始,每一个数都等于它前面两个数的和。根据这一规律,括号里应填的数为:8+13=21或34-13=21上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”。练习4:先找出规律,然后在括号里填上适当的数。(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()(3)0,1,3,8,21,(),144(4)3,7,15,31,63,(),()(5)33,17,9,5,3,()(6)0,1,4,15,56,()(7)1,3,6,8,16,18,(),(),76,78(8)0,1,2,4,7,12,20,()【例题5】下面每个括号里的两个数都是按一定的规律组合的,在□里填上适当的数。(8,4)(5,7)(10,2)(□,9)【思路导航】经仔细观察、分析,不难发现:每个括号里的两个数相加的和都是12。根据这一规律,□里所填的数应为:12-9=3练习5:下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。(1)(6,9)(7,8)(10,5)(□,)(2)(1,24)(2,12)(3,8)(4,□)(3)(18,17)(14,10)(10,1)(□,5)(4)(2,3)(5,9)(7,13)(9,□)(5)(2,3)(5,7)(7,10)(10,□)(6)(64,62)(48,46)(29,27)(15,□)(7)(100,50)(86,43)(64,32)(□,21)(8)(8,6)(16,3)(24,2)(12,□)找规律(三)一、知识要点对于较复杂的按规律填数的问题,我们可以从以下几个方面来思考:1.对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法再分析;2.对于那些分布在某些图中的数,它们之间的变化规律往往与这些数在图形中的特殊位置有关,这是我们解这类题的突破口。3.对于找到的规律,应该适合这组数中的所有数或这组算式中的所有算式。二、精讲精练【例题1】根据下表中的排列规律,在空格里填上适当的数。【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。练习1:找规律,在空格里填上适当的数。【例题2】根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?【思路导航】经仔细观察、分析可以发现前面两个圈中三个数之间有这样的关系:5×12÷10=64×20÷10=8根据这一规律,第三个圈中右下角应填的数为:8×30÷10=24.练习2:根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数。(1)(2)(3)【例题3】先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。12345679×9=12345679×18=12345679×54=12345679×81=【思路导航】题中每个算式的第一个因数都是12345679,它是有趣的“缺8数”,与9相乘,结果是由九个1组成的九位数,即:111111111。不难发现,这组题得数的规律是:只要看每道算式的第二个因数中包含几个9,乘积中就包含几个111111111。因为:12345679×9=111111111所以:12345679×18=12345679×9×2=22222222212345679×54=12345679×9×6=66666666612345679×81=12345679×9×9=999999999.练习3:找规律,写得数。(1)1+0×9=2+1×9=3+12×9=4+123×9=9+12345678×9=(2)1×1=11×11=111×111=111111111×111111111=(3)19+9×9=118+98×9=1117+987×9=11116+9876×9=111115+98765×9=【例题4】找规律计算。(1)81-18=(8-1)×9=7×9=63(2)72—27=(7-2)×9=5×9=45(3)63-36=(□-□)×9=□×9=□【思路导航】经仔细观察、分析可以发现:一个两位数与交换它的十位、个位数字位置后的两位数相减,只要用十位与个位数字的差乘9,所得的积就是这两个数的差。练习4:1.利用规律计算。(1)53-35(2)82-28(3)92-29(4)61-16(5)95-592.找规律计算。(1)62+26=(6+2)×11=8×11=88(2)87+78=(8+7)×11=15×11=165(3)54+45=(□+□)×11=□×11=□【例题5】计算(1)26×11