铁超磁致伸缩材料在异型销孔加工中的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

沈阳理工大学硕士学位论文铁超磁致伸缩材料在异型销孔加工中的应用姓名:周亮申请学位级别:硕士专业:机械制造及其自动化指导教师:李国康2010-12-27(GMM)GMMAbstractGiantmagnetostrictivematerial(GMM)isanewkindoffunctionalmaterialwhichwassupposedtohaveagoodprospectintheapplicationofabnormityborespistonmachining,becauseofitslargemagnetostrictivecoefficient,rapidresponseandlargecouplingcoefficient.ThebestsolutionofabnormityborespistonmachiningwasobtainedfirstlybythesummarizationandanalysisoftheNCformingprincipleanditscommonlyprocessingmethods.Thecharacteristicsofthegiantmagnetostrictivematerialswereverifiedsecondlybyexperiments.Theimpactofnonlinearhystereticcharactersonthedriversandmicro-feedmechanismwerefoundoutbytheanalysisofgiantmagnetostrictivematerials’relatednature.Besidesthat,thecharacteristicsthatofthemagnetostrictiveactuatorwhichwasahigh-precisiondrivesystemweretestedandanalyzed.Andthedesignandimprovementoftheprogramofradialmicro-toolfeedmechanism,radialdisplacementmeasuringofboringbar,closed-loopimprovementofNCsystemdataanalyzingandacquisitionoffeedbackdatabyeddycurrentsensorwhichwasattheendofboringbarwerecompletedtoachievetheprecisionmachining.ThefeasibilityandrationalityofdrivingmethodandcontroltheoryofgiantmagnetostrictionwasprovedbythetestsandimprovedexperimentsoftheoverallCNCmachiningsystem’sactuatorandmicro-feedermechanics.Theerrorwasanalyzedandstudiedfinally.Keyword:GMM,magnetostrictiveactuator,magnetostrictivenonlinear,micro-feed:1-1-11.120091379.1048.3%“2009”0.005mm0.0050.01mm(),IT40.003mm,(2040mµ)[1]-2-1.221WWYBOHAIMAHLEBOBJOKS;1.1:1.1NCNCmmBOHAI±0.005KS±0.005DEVLZ-EG2.5µ/AB8200CNC±0.005CROSS3.0µ/±0.005±0.0011-3-CNCCNC:20[2]1.3Z;X:3µm1.5µm0.4µm1.130%1.1-4-[3][4][17]:1[19]1.2BOHAI0.005mµ±1.22KS,±0.005mm1000r/min31-5-3000r/min100Hz1.21.21.4GMAGMAGMAGMMGMA10mµ±10mµ±5mµ±-6-123452-7-22.12.1.1[7]Vinariλ/llλ=∆(2-1)l∆-----l-----λ0;λ0λλ[8]λsλ2.12.1-8-;2.1.2310−(510−)1xxyTbDyFe−[7~9]1T(Tc)Ms=0Ms0(2.2)2.22212sNMV(MsvN)ld[8](ld)N32-9-[9]2.3λH123123H1H2Hλ2.31232.22.2.11λλλ;λ-10-2.42TbFe250020001500100050000200016001200800400H(kA/m)||(ppm)2.421842;3hλ2-11-µ'µEµ'µµ'µ[25];4[20]HsdHεσ=+(2-2)BdHσσµ=+(2-3)ε-----σ-----H-----d-----B-----Hs-----σµ-----(2-2)(2-3);0~80K0HdKsµµ=(2-4)LdH=-12-0BHµµ=2214HrSLfρ=dµ0µHSBHLrfρ[21]5;:;2.2.2()-[14][15][18]16150010−×—6200010−×3526~30--2-13-31ps;lms10sµ4,250003/Jm400~500125380200620MPa4Mpa781Joule2Villari3E∆4Viedemann5Anti-Viedemann6Jump[40][37]2.2.31-14-28MPa700MPa223612.910−×/45—10Q235(1000)52-15-2.32.3.1——BH[38]01TPHdBT=⋅∫(2-5)T-----H-----B-----2.3.2[39]()cosmHHtω=(2-6)-16-mH-----ω-----22mMejMHDLWπδσ=(2-7)MD-----L-----Mσ-----jδ-----[36]2.3.32.5V()λ)aλH“”bλ∝KHKλH“”cλH“”“”2-17-03025201510530252015105(V)(m)ABC2.52.4-18-33.1:3.1(Tθ)XxS=X(iZjθ)SiZi,jθjxS=X(iZjθ)S=X(iZ)jθ[16][17]3.13.21123-19-321[22]3.20.01mm3.22[23]3.3-20-3.33[24]3.43-21-3.443.53.5-22-3.33.3.13.63.63.6DSP3-23-3.3.2windowsVisualC++windowsVxDDOSISAIO6403,82531DOS2windows3.3.36mµ3mµ-24-3.73.72400r/min3.44-25-44.1JJ:0limVPmJV∆→=∆∑(4-1)Pm∑-----V∆-----(4-1)JJ4.10H'θ±θH0H-26-'10Hθµ='010HHHθθµ−=−=(4-2)0Hθµ='000*()Hµθµµµ=−(4-3)µ-----0µ-----S'0**FHSθ=(4-4)*FKl=∆Kl∆(4-4)(4-3)'0**SHlKθ∆=(4-5)J'θ'*cosJnJθθ==(4-6)n-----θ-----Jn4.1J(4-6)'Jθ=(4-7)(4-3)(4-5)(4-7)4-27-200***()SlJKµµµµ∆=−(4-8)0µµ(4-8)20**SlJKµ∆≈(4-9)µ0BHJJµ=+≈(4-10)(4-10)(4-9)20*SlBKµ∆≈(4-11)[29]4.24.2.11:[28]-28-B4.22HH1HH12,aa2a2H2aaHmH21mHHB2HH1H2Hm0B2B=0H1124.24.3BB0V30V30V0Vλ4.34-29-4.31.2.3.2-30-4.2.2[26][27]4.40510152025300510152025304.412344-31-4.34.3.14.54.5-32-4.3.2l)2)3)4)123456784.64.74-33-GMM20mm500030mm210mm6.5Ω45mm;10mm4.14.84.10.10.20.30.40.50.60.70.8610λ−×421743625507028068969570.911.522.533.54610λ−×1008105411861272132813691401144300.511.522.533.5402004006008001000120014001500H(KOe)λ4.8-34-4.45-35-55.1CNCComputeNumbericalControlCNCCNC5.1.5.1-36-[32]5.25.2.1,/5.25.2/5.35-37-5.35.2.25.45.4[30]5.5-38-5.5ABAαABβγ∆e'e∆ex∆,ey∆AB1ρ2ρ2221122222(cos)(sin)(cos())(sin())eeeexyrxyrραραραβραβ−∆+−∆=+−∆++−∆=(5-1)β=90°2221122222(cos)(sin)(sin)(cos)eeeexyrxyrραραραρα−∆+−∆=−∆+−∆=(5-2)ex∆ey∆2212121212cossin2(sincos)sincoseeyxρρραραραραραρα−+∆=−∆−−(5-3)2212122(sincos)mρρραρα−=−1212cossinsincoskραραραρα+=−eeymkx∆=−∆(5-4)(5-4)(5-3)222221111(1)2(cossin)(2sin)0eekxkmkxmmrραραρρα+∆−−+∆+−+−=(5-5)5-39-222221111112(cossin)(cossin)(1)(2sin)1ekmkkmkkmmrxkραραραραρρα−++−+−+−+−∆=+(5-6)ex∆ey∆'e∆,α30°45°ex∆ey∆5.65.61820°1818185.35.3.1-40-[31]5.7O0r(,)iiiPrθ∆(i=1,2,3…m),ir∆,iθ1O,reiε1OBr=,1OOe=,iiPBε=,iiPOMθ∠=,1OOMα∠=5.7220cos()()sin()iiiiiPOrrereθαεθα=+∆=−++−−(5-7)22()()sin()iifereεθα=+−−24243()()sin()sin()...2()8()iiiiieeferrrεθαθαεε=+−−−−−++(5-8)eirε+2sin()iθα−1()()iferε≈+(5-9)0cos()iiirrarθαε+∆=−++cosaeα=sinbeα=0cossiniiirrabrθθε+∆=+++(5-10)0cossiniiirrabrεθθ=+∆−−−(5-11)iε22011(,,)(cossin)mmiiiiiFrabrrabrεθθ====+∆−−−∑∑(5-12)5-41-,,rab(,,)Frab(5-11)0cossiniiiirrabrθθε∆=++−+i=1,2,3…m(5-13)121211...1coscos...cossinsin...sinmmQθθθθθθ=22cos...sincoscos...cossinsincossin...siniiTiiiiiiiimWQQθθθθθθθθθθ==∑∑∑∑∑∑∑∑=[]22diagmmm(5-14)0,20,mm≠≠1W−[]1122Wdiagmmm−=[]12,,...TmRrrr=∆∆∆[]0,,TPrrab=−,cos,sinTTiiiiiCQRrrrθθ==∆∆∆∑∑

1 / 71
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功