高压锅销售量的 预测分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高压锅销售量的预测分析摘要Logistic增长曲线模型和Gompertz增长曲线模型是计量经济学等学科中的两个常用模型,可以用来拟合销售量的增长趋势。本文运用以上两种曲线模型研究了某地区高压锅的销售量的变化规律,并根据给定的1981年到1993年高压锅销售量的数据,运用趋势分析法,分别建立指数增长模型、Logistic增长曲线模型和Gompertz增长曲线模型来对高压锅的销售量进行预测分析,并对各模型进行了比较分析。一、模型的背景问题描述趋势分析法又叫比较分析法、水平分析法,它是通过对财务报表中各类相关数字资料,将两期或多期连续的相同指标或比率进行定基对比和环比对比,得出它们的增减变动方向、数额和幅度,以揭示企业财务状况、经营情况和现金流量变化趋势的一种分析方法。趋势分析法在定量预测。趋势分析法又可称为趋势曲线分析、曲线拟合或曲线回归。它是根据已有的历史数据资料来拟合一条曲线,使得这条曲线能够反映出研究对象本身的增长趋势,然后按增长趋势曲线,对要求的未来的某一点进行估计,预测出该点该时刻的研究对象的预测值。能够正确并掌握认识销售量的变化规律,才能建立正确的销售量预测模型,做出准确的预报,为企业未来发展方向,企业发展定位,商品生产作出有利预测。下表为某地区1981年到1993年间高压锅的销售量列表(单位:万台)。表1-1:高压锅的销售量(单位:万台)年份ty年份ty1981043.65198871238.7519821109.86198981560.0019832187.21199091824.2919843312.671991102199.0019854496.581992112438.8919865707.651993122737.7119876960.25本文根据表1-1高压锅的销售量数据,分析销售量的变化规律,得到该地区高压锅的销售量的变化趋势的拟合曲线,建立销售量的模型,通过建立的销售量模型,得到模拟曲线,根据得到的拟合曲线,并对该地区的高压锅销售量进行预测。通过预测对该地区高压锅生产企业作出指导。当地企业可以根据预报的高压锅销售量,对高压锅生产量进行控制,避免了因为市场的盲从效应而造成的损失。二、基本假设1、产品的销售不受人为因素影响。2、高压锅的销售量随时间连续变化。3、任一单位时刻,高压锅的增长量与当时的高压锅总量成正比。4、销售量的增长律短时间内是不变的。5、在处理数据、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。26、在一段时间里,销售市场是平稳发展的,在高压锅的销售过程中,市场对高压锅的需求量稳定。7、假设说明:严格的说,讨论销售量所建立的模型属于离散型模型,但在销售量基数很大的情况下,突然地增加或减少的只是单一的个体或少数几个个体数,相对于全体数量而言,这种改变量是极其微小的,因此,销售量可以看作是可随时间的连续变化,这样,就可以采用微分方程的工具来研究这一问题。三、问题分析本文要求根据某地的1981年到1993年间高压锅销售量的数据,建立高压锅的销售量模型。根据表1-1:高压锅的销售量(单位:万台)提供的数据,以时间t为衡轴,销售量y为纵轴,建立销售时间t与销售量的关系图,如图表3-1:图表3-1根据图表3-1,显然,高压锅的销售量随时间的变化呈指数增长。产品的销售平稳,经济发展的稳定,销售市场的平稳发展,高压锅在销售过程中,市场的外部环境总体稳定,在这一假设下,高压锅的销售量是随着时间的连续变化而变化的,也就是说,高压锅的销售数量是连续变化的,但总体分析可以得出增长量与当时的高压锅总量成正比,销售量的增长律是不变的。据此,建立高压锅的销售量指数增长模型。四、符号说明r固有高压锅销售量增长率,即:0rrxt时段t的高压锅销售量数mx高压锅的最大销售量,显然有0mrx五、模型建立1、建立高压锅指数增长模型高压锅的销售量05001000150020002500300002468101214时间t销量y3假设商品是自然销售的,即不受人为因素影响,记时刻t的销售量为x(t),在销售量基数很大的情况下,突然地增加或减少的只是单一的个体或少数几个个体数,相对于全体数量而言,这种改变量是极其微小的,可以忽略不计。即销售量可以看作是可随时间连续变化的,将x(t)视为连续、可微函数。记初始时刻(t=0)的销售量为0x,假设销售量增长率为常数r,即单位时间内的x(t)的增量等于r乘以x(t)。考虑t到tt时间内高压锅销售量的增量,有()xttxtrxtt令0t,得到xt满足微分方程dxrxdt00xx(1)由这个方程解出:0()rtxtxe(2)(2)式的参数r和0x可以用表1-1数据估计。为了利用最小二乘法,将(2)式取对数,可得yrta,lnyx,0lnax(3)分别以1981年到1992年的数据和1981年到1993年的数据拟合(3)式,用matlab计算:t=0:11;x=[43.65109.86187.21312.67496.58707.65960.251238.7515601824.2921992438.89];y=log(x);p=polyfit(t,y,1)r=p(1),x0=exp(p(2))Y=polyval(p,t);X=exp(Y);p=0.34354.4914r=0.3435x0=89.2424得到r=0.3435,0x=89.2424t=0:12;x=[43.65109.86187.21312.67496.58707.65960.251238.7515601824.29219942438.892737.71];y=log(x);p=polyfit(t,y,1)r=p(1),x0=exp(p(2))Y=polyval(p,t);X=exp(Y);得到r=0.3205,0x=97.1060结果分析:用上面得到的参数r和0x代入(3)式,将结果与实际数据比较。X1是用1981年到1992年的数据拟合的结果,计算人口x2用的是全部数据的拟合的结果。表5-1年实际销售量计算销售量x1计算销售量想198143.6589.242497.10601982109.86125.8205133.79421983187.21177.3910184.34391984312.67250.0989253.99211985496.58352.6078349.95451986707.65497.1323482.17311987960.25700.8937664.346019881238.75988.1715915.346919891560.001393.21261.219901824.291964.21737.719912199.002769.32394.219922438.893904.43298.819932737.715504.74545根据表5-1的数据,用matlab制作指数增长型拟合图形,图5-1.1表示用1981年到1992年的数据拟合的结果图,图5-1.2表示用全部数据(1981年到1993年)拟合的结果。图5-1.1、图5-1.2中曲线是计算结果,“*”表示实际数据。5图表5-1.2图表5-1.26通过以上数据及图表,明显地,对于高压锅的销售量的分析指数模型并不适用,其原因是高压锅的销售是受市场的影响的,人的消费观念不会一成不变,购买欲是不随时间稳定变化的,由此可见,高压锅的销售量的增长律是不变的假设不成立。需重新建立模型分析。2.高压锅销售线性模型的假设由图表3-1,假设y和t满足线性关系,所以建立线性模型,设baty利用最小二乘法确定ba,的具体值,并根据ba,的值拟合高压锅的销售情况,与原数据进行比较。MATLAB的程序实现如下:y=[43.65109.86187.21312.67496.58707.65960.251238.751560.001824.292199.002438.892737.71];t=0:12;p=polyfit(t,y,1);yy=polyval(p,t,1)plot(t,y,'*',t,yy)画出原数据与拟合曲线,如图5-2图5-2线性模型baty的误差分析7预测的标准误差为:13)(2yyys.2915.157模型baty分析从图形及标准误差可以看出,线性模型虽然简单,但误差太大。并且当t时y,而高压锅销售量是有限的,也就是说高压锅的销售量是一个有限的数,不可能是一个无限大的。所以,用线性模型不能完全反映高压锅的销售情况。必须寻找一个更好的模型去分析高压锅的销售情况。3.建立高压锅logistic模型由于高压锅在进入市场初期没有太多人家了解或清楚高压锅,致使人们对高压锅的购买数量不大,所以此时高压锅销售数量的增长率小;随着时间的推移,人们开始认识到使用高压锅的好处,高压锅的销售量增长率也逐渐提高;之后越来越多的人家都有高压锅了,而高压锅的经久耐用决定了高压锅销售量的增长率会逐渐减少;到最后该地区基本上所有人家都有高压锅了,高压锅的销售数量将趋于一个定值,即L,此时销售数量的增长率将趋于0.所以,综上所述,高压锅的销售情况满足Logistic模型。设高压锅的销售数量的增长率为r(t),高压锅的销售量的上限为L,销售量为y(t)则有:))(1()(Ltyrtr.(2-1)yLtyrytrdtdy))(1()(.(2-2)建立模型00)(0,)1(ytyryLyrdtdy.(2-3)模型分析当L与y(t)相比很大时,LyryLyr2,与ry相比可以忽略不计,Logistic模型可以转化为指数模型;而当L与y相比不是很大时,Lyr2就不能忽略,其作用是使高压锅的销售量的增长速度减缓下来。用Matlab对一阶常微分方程模型做分析,程序如下:8y=[43.65109.86187.21312.67496.58707.65960.251238.751560.001824.292199.002438.892737.71];t=0:12;y0=43.65;[tt,yy]=ode45(@Logistic,t,y0);plot(t,y,'*',tt,yy);作图结果,如图5-3图5-3对线性化Logistic增长模型并做非线性回归线性化Logistic增长曲线模型Logistic增长曲线模型为kttaeLy1.(3-1)两边同时取倒数得ktaeyL1,整理得ktaeyL1.(3-2)两边同时取对数得ktaeaaeyLktktlnlnln)ln()1ln(.(3-3)令)1ln(1yLy,kaa,abbln.即可得到一个线性关系式:bbaatyy.(3-4)所以Logistic增长曲线模型能线性化。用Matlab对Logistic模型做非线性回归Matlab程序如下:y=[43.65109.86187.21312.67496.58707.65960.251238.751560.001824.292199.002438.892737.71];t=0:12;9L=3000;y1=log(L./y-1);p=polyfit(t,y1,1);k=-p(1);a=exp(p(2));yy=L./(1+a*exp(-k*t));plot(t,y,'*',t,yy);拟合Logistic模型,画出拟合图形,如图5-4图5-44.拟合Gompertz模型线性化Gompertz模型Gompertz增长曲线模型为ktbetLey.(4-1)两边同时除以L得ktbeeLy.(4-2)两边同时取对数得ktbeLyln.(4-3)再两边同时取对数得ktbLy)ln(lnln.(4-4)10令Lyylnln2,kaa,)ln(bbb.得线性关系式bbaaty2.(4-5)拟合Gompertz模型用Matlab拟合Gompertz模型Matlab程序如下y=[43.65109.86187.21312.674

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功