《图形的平移与旋转》全章复习与巩固(提高)巩固练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.轴对称与平移、旋转的关系不正确的是().A.经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D.经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的2.在旋转过程中,确定一个三角形旋转的位置所需的条件是().①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④B.①②③C.②③④D.①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为().ABCD4.(2016·株洲)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C顺时针方向旋转后得到△A’B’C’,若点B’恰好落在线段AB上,AC、A’B’交于点O,则∠COA’的度数是()A.50°B.60°C.70°D.80°5.如图,把矩形纸条ABCD沿EFGH,同时折叠,BC,两点恰好落在AD边的P点处,若90FPH∠,8PF,6PH,则矩形ABCD的边BC长为().A.20B.22C.24D.30第4题第5题6.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下图的一座“小别墅”,则图中阴影部分的面积是().A.2B.4C.8D.107.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕A点按逆时针方向旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是().A.6B.3C.16D.18.如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是().A.①③④B.①②⑤C.③④⑤D.①③⑤二、填空题9.如图,图B是图A旋转后得到的,旋转中心是,旋转了.10.在RtABC中,∠A∠B,CM是斜边AB上的中线,将ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13.时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是.14.如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是.16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17.如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k=时,第一次出现P的“点回归”;连续转动的次数k=时,第一次出现△PQR的“三角形回归”.猜想:我们把边长为1的等边三角形PQR沿着边长为1的正n(n>3)边形的边连续转动,(1)连续转动的次数k=时,第一次出现P的“点回归”;(2)连续转动的次数k=时,第一次出现△PQR的“三角形回归”;(3)第一次同时出现P的“点回归”与△PQR的“三角形回归”时,写出连续转动的次数k与正多边形的边数n之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB、CD与x轴平行,边AD、BC与x轴平行,点B、C的坐标分别为B(a,1),C(a,c),且a、c满足关系式c=++3.(1)求B、C、D三点的坐标;(2)怎样平移,才能使A点与原点重合?平移后点B、C、D的对应分别为B1C1D1,求四边形OB1C1D1的面积;(3)平移后在x轴上是否存在点P,连接PD,使S△COP=S四边形OBCD?若存在这样的点P,求出点P的坐标;若不存在,试说明理由.20.如图,P是等边三角形ABC中的一点,PA=2,PB=32,PC=4,求BC边得长是多少?【答案与解析】一.选择题1.【答案】B.【解析】A、多次平移相当于一次平移,故正确;B、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确.故选B.2.【答案】A.3.【答案】B.ACBP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=BC′,∴∠B=∠BB’C=50°,∵∠BB′C=∠A+∠ACB’=40°+∠ACB’,∴∠ACB’=10°,∴∠COA’=∠AOB’=∠OB’C+∠ACB’=∠B+∠ACB’=60°.故选B.5.【答案】C.【解析】Rt△PHF中,有FH=10,则矩形ABCD的边BC长为PF+FH+HC=8+10+6=24,故选C.6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选B.7.【答案】B.【解析】阴影部分的面积等于扇形DAB的面积,首先利用勾股定理即可求得AB的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积;④S△APD+S△APB=S△APE+S△EPB=162.二.填空题9.【答案】X;180°.【解析】观察图形中Z点对应点的位置是图A绕旋转中心X按逆时针旋转180°得到的.故答案为:X;180°.10.【答案】30°.【解析】解法一、在Rt△ABC中,∠A<∠B∵CM是斜边AB上的中线,∴CM=AM,∴∠A=∠ACM,将△ACM沿直线CM折叠,点A落在点D处设∠A=∠ACM=x度,∴∠A+∠ACM=∠CMB,∴∠CMB=2x,如果CD恰好与AB垂直在Rt△CMG中,∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB=60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功