函数与几何综合题的解题策略及复习方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

浅说函数与几何综合题的解题策略及复习方法孝南区书院中学邓志军一函数与几何问题的综合题的分类:1几何元素间的函数关系问题:这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;二、函数与几何综合题例析(一)“几函”问题:1、线段与线段之间的函数关系:(1)观察几何图形的特征:2、函数图像中的几何图形的问题:(2)依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系;(3)将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的取值范围。例1如图,AB是半圆的直径,O为圆心AB=6,延长BA到F,使FA=AB,若P为线段AF上的一个动点(不与A重合),过P点作半圆的切线,切点为C,过B点作BE⊥PC交PC的延长线于E,设AC=x,AC+BE=y,求y与x的函数关系式及x的取值范围。(2003年山东省烟台市中考题)OACPFBE评析:这是一道集圆、直角三角形、相似三角形与函数的综合题,由于已知条件中有切线,因此可以联想切线的性质、切割线定理、弦切角定理、切线长定理;又因为有直径这一已知条件,又可联想构造直径所对的圆周角。因此,连结BC,构造出“双直角三角形”和弦切角定理的典型图形,然后利用两对相似三角形中的一对建立比例式,再结合勾股定理解决问题。OACPFBE2、面积与线段间的函数关系的建立:解决此类问题除了掌握第一类型的知外,还要注意到以下两点:(1)常见图形的面积公式;(2)学会灵活地将非特殊图形的面积转化为特殊图形的面积,将同底(或等高)的两个三角形的面积之比转化为它们的高(或底)之比,将相似三角形的面积之比转化为相似比(或周长的比、对应边上的高的比、对应边上的中线的比等)的平方。10-10-1010EBOPAF例2如图所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个单位长度的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平移(即EF∥x轴),并且分别与y轴、线段AB交于E、F点,连结FP,设动点P与动直线EF同时出发,运动时间为t秒。(1)当t=1时,求梯形OPFE的面积。t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长。(3)设t的值分别取t1、t2时,(t1≠t2),所对应的三角形分别是ΔAF1P1和ΔAF2P2,试判断这两个三角形是否相似;请证明你的判断。(2003年广西南宁市中考题)(二)“函几”问题:1、三类基本初等函数中的图形面积问题:解决这类问题时,通常要将坐标系中的图形进行分割,一般情况是将它分割成一些两边(或三边)在坐标轴上或者两边(或三边)平行于坐标轴的三角形(或梯形、矩形)等;同时要注意点到坐标轴的距离与点的坐标间的区别,正确利用点的坐标来表示线段的长度。例3如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线与x轴垂直。(1)求点C的坐标;(2)设OBC中位于直线左侧部分的面积为s,写出s与x之间的函数关系式;(3)在直角坐标系中画出(2)中函数的图象;(4)当x为何值时,直线平分三角形OBC的面积?(2003年常州市中考题)2、三类基本初等函数中的三角形、四边形、圆的问题:这类题目一般由1~3问组成,第一问往往是求函数的解析式,然后在此基础上再与几何中的三角形(全等、相似或特殊三角形是否存在等问题)四边形(面积的函数关系式、特殊四边形是否存在)和圆(直线与圆的位置关系的判断、圆中的比例式是否成立)结合起来,利用初中的主干知识全面考查学生综合运用所学知识解决问题的能力;解决这类综合性问题时要注意以下几个问题:(1)注意弄清题目中所涉及的概念,熟悉与之相关的定理、公式、技巧和方法;(2)注意剖析综合问题的结构,弄清知识点之间的联系,善于把一个综合题分成若干个基本题,各个知识点之间的结合部,往往是由一个基本问题转化到另一个基本问题的关键;(3)注意从不同的角度来探索解题的途径,注意运用“从已知看可知”,“从结论看需知”等综合法与分析法来沟通已知条件与结论。例4已知二次函数的图象如图所示,(1)求二次函数的解析式及抛物线的顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q,当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使ΔPAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将ΔOAC补成矩形,使ΔOAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这边的对边上,试直接写出矩形的未知顶点的坐标(不需要计算过程)。例5已知二次函数y=x2+bx+c的顶点在直线y=-4x上,并且图象经过点A(-1,0)。(1)求这个二次函数的解析式;(2)设此二次函数与x轴的另一个交点为B,与y轴的交点为C,求经过M、B、C三点的⊙O′的直径长;(3)设⊙O′与y轴的另一个交点为N,经过P(-2,0)、N两点的直线为l,则圆心O′是否在直线l上,请说明理由请说明理由;(2003年成都市中考试题)二、函数与几何综合题的解题策略:1、综合使用分析法和综合法。就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。如本文例5中的第(2)、(3)问的解答就使用了此种方法;2、运用方程的思想。就是寻找要解决的问题中量与量之间的等量关系,建立已知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;如本文例2中的第(2)个问题的解决就用到了此种思想;3、注意使用分类讨论的思想。函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多一个心眼儿,多从侧面进行缜密地思考,用分类讨论的思想探讨出现结论的一切可能性,从而使问题的解答完整无遗。如本文例4中的第(2)、(3)问,要从直角的顶点的位置、矩形的第四个顶点的位置进行讨论,例3第(2)问中,求面积S与x间的函数关系式时,也要分直线l在点C的左边和右边两种情况来讨论,千万不能一蹴而就;4、运用数形结合的思想。在中学数学中,“数”与“形”不是孤立的,它们的辩证统一表现在:“数”可以准确地澄清“形”的模糊,而“形”能直观地启迪“数”的计算;使用数形结合的思想来解决问题时,要时刻注意由图形联想其性质,由性质联想相应的图形,从而使问题得以简化;如本文中的例1,在解决y与x间的函数关系时,首先根据图形的性质,建立起线段间的关系式,然后再利用线段间的关系,建立y与x间的函数关系;在求自变量x的取值范围时,把自变量所对应的几何元素推到两个极端的位置,求出相应的值,再结合几何量的实际意义和题目中的已知条件加以确定;5、运用转化的思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题,上面所有各例,都用到了转化的数学思想,可以大胆地说,不掌握转化的数学思想,就很难正确而全面地解决函数与几何结合的综合问题;三、函数与几何综合题复习的几点建议:1、归纳整理浓缩精华在复习过程中,要对近几年各地的中考试题进行归类、整理,将类型相同或相似的题目的精华浓缩于一个题目中进行分析、讲解,提高复习效率。笔者对近三年各地的中试题进行研究发现,有很多地方的中考数学试题都有惊人的相似之处,如山西省2003年中考数学试卷中的第27题与孝感市2002年的压轴题完全相似,只不过改变了提问的方式,使问题略有一点探索性;而2003年孝感市的压轴题与2002年南京市中考数学试卷第八题中的已知条件完全一样,要解决的问题也几乎一样,2003年黄冈市的压轴题与2002年哈尔滨市中考数学压轴题的已知条件和图形都极其相似,问题只有第(3)问不一样(没有第四问),……,因此深入研究各地的中考试题,将它们进行归类进行复习,可以节约大量的时间。2、总结规律,触类旁通在复习过程中,对例题的讲解要注意引导分析,解完题后要注意对解题过程作更深入、更广阔的反思,总结那些比解题更重要的东西——规律,如解决坐标系中的面积问题,通常要将不规则的图形转化为规则的图形,而转化的方法通常是过图形的顶点作坐标轴的垂线,将求不规则图形的面积问题转化为两边(或三边)垂直于(或平行于)坐标轴的基本图形的面积问题;又如,求动态几何中的函数关系式中自变量的取值范围时,可以把自变量所代表的几何量推到两个极端位置,求出相应值,再结合几何量的实际意义加以确定;如果我们在复习过程中不注意总结解决问题的规律,讲得再多,练习得再多,也只能的“题海”中打转,很难进入“举一反三”、“触类旁通”的境界,遇到新的问题,也就很难产生灵感,找到思路;3、紧盯《考纲》挖掘课本在复习过程中,要注意挖掘课本例、习题和各地中考成题中的潜在结论,变化出新的综合题,以开阔学生的思路,培养学生分析问题、解决问题的能力;如2002年孝感市的压轴题就是将初中《几何》课本P182的“做一做”改编而成,2002年襄樊市的阅读理解题就是根据初二《代数》课本P38中的“读一读”的内容改编而成,而太原市2003年的中考压轴题是由《几何》第三册P79例2改编、深化而成,嘉兴市2003年中考数学试卷中的第24题、厦门市第28题都是由《代数》第三册P126面的第4题和P72面的第7题改编而成;因此,在复习过程中,一定要注重课本,千万不能以练代讲,以资料代替课本。敬请各位教师指正

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功