小升初专项训练内部资料4------110/24/2019平面图形面积————圆的面积班级姓名上课时间专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的3.144,而在圆内的最大正方形占所在圆的面积的23.14,这些知识点都应该常记于心,并牢牢掌握!.例题1。求图中阴影部分的面积(单位:厘米)。【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。62×3.14×1/4=28.26(平方厘米).练习1求下面各个图形中阴影部分的面积(单位:厘米)。例题2。求图中阴影部分的面积(单位:厘米)。【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。3.14×42×1/4-4×4÷2÷2=8.56(平方厘米)练习2:计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。小升初专项训练内部资料4------210/24/2019例题3。在正方形ABCD中,AC=6厘米。求阴影部分的面积。【分析】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)答:阴影部分的面积是3.87平方厘米。.练习31、如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。2、如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。例题4。在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。【分析】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。3.14×(30×2)×1/4-30=17.1(平方厘米)答:阴影部分的面积是17.1平方厘米。小升初专项训练内部资料4------310/24/2019练习41、如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。例5。现有两根圆木,横截面直径都是2分米,如果把它们用铁丝捆在一起,两端各捆一圈(接头不计),那么应准备多长的铁丝?练一练:求右图阴影部分的周长(每个圆的半径都是2厘米)。例6:如右图,已知正方形面积是60平方厘米,求圆的面积。练一练:已知右图中阴影部分的面积是300平方厘米,求圆的面积。例7:已知右图中阴影部分的面积是40平方厘米,求圆环的面积。练一练:右图中平行四边形的面积是100平方厘米,求阴影部分的面积。上面所举的例子只是常见的圆的组合图形面积解法,在以后的练习中,还希望同学们能举一反三,总结自己的学习方法与心得与体会,达到举一反三的效果!小升初专项训练内部资料4------410/24/2019EDCBA圆的面积与组合圆积专题训练一、填空题1.算出圆内正方形的面积为.2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是厘米.(保留两位小数)4.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米.AB长40厘米,BC长厘米.、5.在右上图中(单位:厘米),两个阴影部分面积的和是平方厘米.6.如图,数字9的每一段都是圆周的一段,每一个小方格的边长为1,设π=3.14,那么1,9,9,4四个字所占的面积是多少?6.如图,阴影部分的面积是.7.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(1215206厘米2C②①AB212