第页,共40页11绪论1.1课题研究的意义随着经济建设的日益发展和社会物质文化水平的不断提高,人们开始追求灯光艺术带来的美的享受,注重照明和其他相关设备、系统的整体控制效果。照明控制系统的安装便捷性、可靠性和经济性已经成为关注的热点。智能大厦内需大量的灯光照明设备,传统的控制方法是将被控制的设备用连线引入控制室,这样不仅造成电力电缆铺设过多,增加了投资成本,而且还大大增加了灯回路的辐射干扰,对空间电磁环境造成了污染。智能照明控制系统为智能办公大厦的照明提供了新途径。随着微机控制技术的发展,出现了微机型灯光控制系统。它采用网络控制技术,使得照明灯的电力线路可以不再经过控制室,而直接引入顶棚或马道。这种控制方法不仅可以方便地控制灯光的亮度,还减少了电力线路及相应设施投资,减少了灯回路的辐射干扰,而且可以使灯回路采用母线方式布线,线路规整,便于安装维修。但在目前使用的微机型灯光控制系统中,由于网络通信大多采用RS-232、RS-485、20mA电流环等通信方式,因而普遍存在通信距离短、数据传输速度慢、误码率高、可靠性差等问题。在微机灯光控制系统中引入开放系统互联的通信网络——现场总线可解决上述问题。本文介绍的基于CAN总线的微机灯光控制系统就是采用现场总线控制技术,构成全分散式微机灯光控制系统,有效地解决了微机型灯光控制系统的不足。CAN总线所需的完善的通信协议可由CAN控制器芯片和接口芯片实现,大大降低了系统的开发难度、组成成本,缩短了开发周期。这些是目前CAN总线应用于众多领域、具有强劲的市场竞争力的原因,也是在灯光控制系统中选用CAN网络总线的理由所在。该系统投资少、功能强、可靠性高、便于扩展,特别适合大型的智能办公大厦对灯光设备的控制需要[1]。1.2图书馆照明的发展及现状智能照明控制技术的应用可以追溯到20世纪90年代,当时出现的智能照明控制系统均基于现场总线技术,使照明控制延伸到末端设备。目前,封闭协议有C-Bus和Dynet;开放协议有EIB、DALI、电力线载波和家庭网络[4]。90年代智能照明进入中国市场,然而由于市场的消费意识,市场环境、产品价格、推广力度等各方面的原因,传统的照明理念与国外存在较大差别,厂家的产品制造技术以及产品经销商的经营模式和技术水平有限,一些主要的设备和技术都从国外引进,很第页,共40页2难推动形成较大的消费市场,致使中国的智能照明行业没有稳定、广阔的渠道。照明行业是80年代首先由美国兴起并得以迅速发展的。90年代后期,由于现代计算机技术、自动控制技术、现代通信技术、现代信息处理技术在世界范围内的广泛应用,进入了信息时代并对各行各业都带来了巨大的影响,照明行业也随之发生了巨大的革新,提出了照明智能化的要求。随着人们生活水平的提高,旧的照明设计理念己经不能适应新的需要:不仅要求照明设计的参数应当达标,而且还提出了怎样才能在明亮、舒适并且具有艺术效果的环境中工作和生活的要求。智能照明控制系统集多种照明控制方式、电子技术、通迅技术和网络技术于一体解决了传统方式控制相对分散和无法有效管理等问题,而且有许多传统方式无法达到的功能,比如场景设置以及与建筑物内其它智能系统的关联调节。智能照明系统充分利用了室外的自然光,利用最少的能源保证了要求的照度水平,减少了由于人员不在却仍将灯全部点亮而造成的能源浪费,节电效果十分明显,一般可节约30%以上,使照明管理和设备维护变得更加简单,经济投入减少[2]。传统照明方式是能量流和信息流合一,控制简单、有效、直观,但其一但布线完成后系统就不能再改动,此外要实现复杂的控制要求时,布线将大大增加,这使得系统的可靠性下降,一但出错线路的检查也相当费时、费力。随着大量的商用办公楼和复式住宅的堆出,办公楼管理人员和用户需要对照明器具的实时工予以监视,而传统技术对此无能为力。至于提供安全、舒适、便利的生活环境,实现灯具联动,根据环境自动调整或控制灯光亮度等,使用传统技术是无法想象的。随着人们生活水平的提高,旧的照明设计理念己经不能适应新的需要:不仅要求照明设计的参数应当达标,而且还提出了怎样才能在明亮、舒适并且具有艺术效果的环境中工作和生活的要求。智能照明控制系统集多种照明控制方式、电子技术、通迅技术和网络技术于一体解决了传统方式控制相对分散和无法有效管理等问题,而且有许多传统方式无法达到的功能,比如场景设置以及与建筑物内其它智能系统的关联调节。智能照明系统一般由传感器(如光线感应器、面板开关)、执行器(如调光电子镇流器)、网络通信单元(路由器、中继器等)、以及辅助单元(如电源、导轨)等组成,遵循统一的网络协议,借助各种不同的“预设置”控制方式和控制元件,对不同时间不同环境的光亮进行精确设置和合理管理,此外智能照明系统中还可以对荧光灯控制,由第页,共40页3于荧光灯采用了有源滤波技术的可调光电子镇流器,降低了谐波的含量,提高功率因数,降低无功损耗。因此,在灯具制造工艺相同水平的情况下,在建筑物中采用智能照明系统不仅能操作简单,管理维护方便,还可满足工作、生活多样性需求,并且可以有效地达到节能的目的。智能照明系统可以有效的抑制电网的浪涌电压,避免了过电压和欠电压对光源的损害,避免冲击电流对光源的损害,延长光源的使用寿命;可以实现通过场景切换实现灵活、方便的照明控制,各类参数的设置和变换非常方便,可以获得多种的照明效果;智能照明控制系统中对荧光灯等光源进行调光控制,采用有源滤波技术的可调光电子镇流器,降低了谐波的含量,提高了功率因数,降低了低压无功损耗;智能照明系统充分利用了室外的自然光,利用最少的能源保证了要求的照度水平,减少了由于人员不在却仍将灯全部点亮而造成的能源浪费,节电效果十分明显,一般可节约30%以上,使照明管理和设备维护变得更加简单,经济投入减少[3]。1.3研究方案该智能照明系统应用了俩种传感器,人体红外传感器和自然光线传感器,对现场的自然照明情况和人员情况,实现实时自动检测与控制的功能,从而实现节能降耗的目地。具体功能如下:1,系统设计人体红外检测电路,有进入探测范围时输出信号。2,系统设计自然光检测电路,对照明现场的亮度进行自动检测。虽在工作时间,但现场的亮度如果能够满足设定要求时,系统同样关闭照明设备。3,设计按键电路,设定强制开关和强制关灯按键。如果需要认为开灯或灭灯,可按相应键。比如在教室内,晚上要演示幻灯片,现实条件是室内有人,自然照度不满足工作要求,按照系统的自动控制程序,是不会灭灯的,但我们确实需要灯灭,这时就可以按下强制关灯按键[4]。第页,共40页42系统总体框图在设计最初需要一个整体的思路来确定设计的框架。首先根据设计任务来确定所需要的功能模块;然后按照一定的作用循序把各个功能模块连接起来。本系统需要俩个传感器来分别检测人体红外信号和自然光强信号,需要按键电路来强制灯的开关,还需要指示电路来指示系统的工作状态,等等。图2.1系统照明总体框图如图2.1,为该照明系统总体框图,包括:系统核心AT89C51单片机,输入为两个传感器电路即人体红外检测电路和自然光检测电路,强制开光的按键电路。输出是LED指示电路以及继电器执行电路。最后由继电器电路来控制照明电路的通断,从而实现照明的自动控制。晶振电路和复位电路是单片机系统工作必不可少的。晶振电路结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振提供的时钟频率越高,那单片机的运行速度也就越快。复位电路实现单片机各单元值的初始化。除此之外还需要电源电路把220V交流变成单片机及各功能电路的原件所需的电压。有了上述的系统总体框图,就可以进行系统流流程图的设计。如图1.2,流程经过初始化以后,先判断有无按键按下,如果有则执行相应按键处理程序。如果没有,继续判断红外检测电路有无探测到有人,无人时,灭灯并返回继续判断有无按键按下。如果晶振电路复位电路LED指示电路继电器执行电路照明电路人体红外检测电路自然光检测电路按键电路AT89C51单片机第页,共40页5探测到有人,就接着判断当前照度是否满足设定需求。若照度满足要求,继续返回灭灯程序;若不满足,就给继电器一个动作信号,使其动作,从而开启照明电路[5]。图2.2方案流程图第页,共40页63系统硬件设计3.1主机电路核心器件介绍3.1.1AT89C51单片机性能介绍AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4KB闪烁可编程可擦除只读存储器(ROM)和128B的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,同时,AT89C51可降至0Hz的静态逻辑操作,并支持俩种软件可选的节点工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。功能强大AT89C51单片机可提供许多高性价比的应用场合,可灵活应用于各种控制领域。如图3.1为AT89C51外形图图3.1AT89C51外形图AT89C51主要性能参数:与MCS-51产品指令系统完全兼容4K字节可重擦写Flash闪速存储器1000次擦写周期全静态操作:0Hz-24MHz128x8字节内部RAM第页,共40页732个可编程I/O口线2个16位定时/计数器6个中断源可编程串行UART通道低功率空闲和掉电模式AT89C51结构框图与引脚说明图3.2AT89C51结构框图引脚功能说明:VCC:供电电压GND:接地P0口:P0口为一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。当P1口的管脚写“1”时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被第页,共40页8定义为数据/地址的第八位。在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高[6]。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入“1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下所示:P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.20INT(外部中断0)P3.31INT(外部中断1)P3.4T0(记时器0外部输入)P3.5T1(记时器1外部输入)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周第页,共40页9期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。