2015年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.当0b,当0x时,bxsin是2x的()A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量2.设函数)(xf可导,且2)1()1(lim0fxfxx,则)1(f()A.2B.1C.21D.03.函数112)(3xxxf的单调减区间为()A.),(B.)2,(C.)2,2(D.),2(4.设0)(0xf,则0xx()A.为)(xf的驻点B.不为)(xf的驻点C.为)(xf的极大值点D.为)(xf的极小值点5.下列函数中为xexf2)(的原函数的是()A.xeB.xe221C.xe2D.xe226.dxxx2cos()A.Cx2sin2B.Cx2sin21C.Cx2sin2D.Cx2sin217.02xtdttedxd()A.2xxeB.2xxeC.2xxeD.2xxe8.设yxz,则xz()A.1yyxB.xxylnC.1yxD.xxyln19.设32yxz,则)1,1(dz()A.dydx23B.dydx32C.dydx2D.dydx310.级数12)1(nnnk(k为非零常数)()A.绝对收敛B.条件收敛C.发散D.收敛性与k的取值有关二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.11.220)1ln(limxxx_________.12.函数22)(xxxf的间断点为x_________.13.设xexy2,则dy_________.14.设100)2(xy,则y_________.15.xdx3_________.16.1121dxxx_________.17.103dxex_________.18.设xyzsin2,则xz_________.19.微分方程xy2的通解为y_________.20.级数1nnx的收敛半径R_________.三、解答题:21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)计算1)1sin(lim21xxx.22.(本题满分8分)设曲线方程为xeyx,求0xy以及该曲线在点)1,0(处的法线方程.23.(本题满分8分)计算dxxex.24.(本题满分8分)计算edxxx1ln1.25.(本题满分8分)求曲线3xy与直线xy所围图形(如图中阴影部分所示)的面积S.26.(本题满分10分)设二元函数522yxyxyxz,求z的极值.27.(本题满分10分)求微分方程xyxy1的通解.28.(本题满分10分)计算Dydxdyx2,其中D是由直线xy,1x及x轴围成的有界区域.2015年高等数学(一)试题参考答案一、选择题:每小题4分,共40分.1.D2.C3.C4.A5.B6.D7.B8.A9.B10.A二、填空题:每小题4分,共40分.11.112.213.dxexx)2(14.99)2(100x15.Cx3ln16.017.)1(313e18.xycos219.Cx220.1三、解答题:共70分.21.解:xxxxxx2)1cos(lim1)1sin(lim12121.22.解:1xey,20xy.曲线在点)1,0(处的法线方程为)0(211xy,即022yx.23.解:设tx,则2tx,tdtdx2.tdttedxxetx2dtet2Cet2Cex2.24.解:eeedxxxdxxdxxx111ln1ln1eexx121)(ln21ln23.25.解:由对称性知103)(2dxxxS104241212xx21.26.解:12yxxz,12yxyz.由,,012012yxyx解得.11yx,222xz,12yxz,222yz.2)1,1(22xzA,1)1,1(2yxzB,2)1,1(22yzC.032ACB,0A,因此点)1,1(为z的极小值点,极小值为6.27.解:Cdxxeeydxxdxx11Cdxxx21Cxx3311.28.解:Dxydyxdxydxdyx1002210421dxx105101x101.