冷却器的设计计算

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1《化工原理》课程设计说明书题目:煤油冷却器的设计学院:化工学院专业:化学工程与工艺姓名:梁玉珏学号:2009115040指导老师:赵彬侠同组人员郑莉张冲冲涂袁睿翔完成时间:2011年1月13日2目录(按毕业论文格式要求书写)第一部分设计任务书············································································(1)第二部分设计方案简介评述································································(2)第三部分换热器设计理论计算····························································1、试算并初选换热器规格···································································2、核算总传热系数K0·········································································3、计算压强降······················································································第四部分换热器主要结构尺寸····························································1、管子的规格和排列方法···································································2、管程和壳程数的确定·······································································3、外壳直径的确定·················································································4、折流板形式的确定············································································5、主要附件的尺寸设计·········································································第五部分工艺设计计算结果汇总表及其它············································1、工艺设计计算结果汇总表······························································(页码)2、设计图·····························································································3、参考文献··························································································(页码)3第一部分设计任务书一、设计题目煤油冷却器的设计二、设计任务1.处理能力:G1=16T/h煤油2.设备形式:列管式换热器三、操作条件①煤油:入口温度160℃,出口温度60℃②冷却介质:自来水,入口温度20℃,出口温度40℃③煤油的运行表压为0.1MPa,冷却水的运行表压为0.3MPa四、设计内容①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。②换热器的工艺计算:确定换热器的传热面积。③换热器的主要结构尺寸设计。④主要辅助设备选型。⑤绘制换热器总装配图。五、设计日期开始日期:2011年1月5日结束日期:2011年1月13日六、设计评述换热器是许多工业生产中常用的设备,尤其是石油、化工生产应用更为广泛。在化工厂中换热器、冷却器、冷凝器、蒸发器和再沸器等。换热器的类型很多,性能各异,个具特点,可以适应绝大多数工艺过程对换热器的要求。进行换热器的设计,首先是根据工艺要求选用适当的类型,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。换热器类型虽然很多,但计算传热面积所依据的传热基本原理相同,不同之处仅是在结构上需根据各自设备特点采用不同的计算方法而已。第二部分设计方案简介评述我们设计的是煤油冷却器,冷却器是许多工业生产中常用的设备。列管式换热器的结构简单、牢固,操作弹性大,应用材料广。列管式换热器有固定管板式、浮头式、U形管式和填料函式等类型。列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体的温差大于50C,故选用带补偿圈的固定管板式换热器。这类换热器结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。第三部分换热器设计理论计算1、试算并初选换热器规格(1)、定流体通入空间两流体均不发生相变的传热过程,因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。(2)、确定流体的定性温度、物性数据,并选择列管式换热器的形式:被冷却物质为煤油,入口温度为T1=160℃,出口温度为T2=60℃冷却介质为自来水,入口温度为t1=20℃,出口温度为t2=40C煤油的定性温度:(16060)/2110mTC水的定性温度:(2040)/230mtC两流体的温差:1103080mmTtC由于两流体温差大于50℃,故选用带补偿圈的固定管板式列管换热器。两流体在定性温度下的物性数据物性流体C温度3/mkg密度smPa黏度)(比热容CkgkJCp/)(导热系数CmW/煤油1107590.5252.430.103水309960.8004.1740.617(3)、计算热负荷Q按管内煤油计算,即123361610()2.4310(16060)1.08103600nphWQCTTW若忽略换热器的热损失,水的流量可由热量衡算求得,即63,21()1.081012.94/4.17410(4020)cpcQCttWkgs(4)、计算两流体的平均温度差,并确定壳程数逆流温差212211222111()()(16060)(4020)49.70716060lnlnln4020mttTtTttCtTttTt12121606054020TTRtt211140200.14316020ttPTt由R和P查图……得温度校正系数为,0.875t所以校正后的温度为49.7070.87543.49mmtttC又因0.8750.8t,故可选用单壳程的列管式换热器。(5)、初步选择换热器规格根据管内为水,管外为有机液体,K值范围为340~9102/()WmC,假设K=4302/()WmC故由于261.081062.0840043.49mQSmKt160604020805022mmTtCC>,因此需要考虑热补偿。初选固定板式换热器规格尺寸如下:外壳直径D500mm管排方式——正三角形排列管程流通面积S0.0113m2公称压力P4.00Mpa管数n144管程数4管长L6m管尺寸φ25×2.5mm(不锈钢管)中心距32mm公称面积S66.7m2换热器的实际传热面积200(0.1)1443.140.025(60.1)66.69SndLm采用此换热面积的换热器,则要求换热过程的总传热系数为:62001.0810372.4/()66.6943.49mQKWmCSt2、核算总传热系数K0(1)、计算管程对流传热系数i,因为管中水的质量流量为12.94/Wckgs,则水的体积流量为3/12.94/9960.01299/VcWcms2221443.140.0200.01130444iipnAdmN/0.01299/0.011301.1496/iciuVAms430.021.1496996Re2.86310()0.810iiidu湍流334.174100.810Pr5.41200.617iCp所以:0.80.440.80.420.023RePr0.6170.023.863105.41205126.1/()0.02iidWmC(液体被加热)(2)(2)、计算壳程对流传热系数o换热器中心附近管排中流体流通截面积为20.025(1)0.150.5(1)0.01640.032oodAhDmt式中h——折流挡板间距,取150mmt——管中心距,对于252.5mm的管中心距为32mm。煤油的质量流量为16000/3600/s4.444/Whkgkgs,则煤油的体积流量为3/4.444/7590.005856/hhVWms由于换热器为两壳程,所以煤油的流速为:/0.05856/0.0164/0.3571/osouVAmsms由于管为三角形排列,则有2222334()4(0.0320.025)24240.02023.140.025oootddemd煤油在壳程中流动的雷诺数为430.02020.3571759Re1.043100.52510eoodu因为Reo在36210~110范围内,故可采用凯恩(Kern)法求算o,即0.551/30.36ReProed332.43100.52510Pr12.390.103oCp由于液体被冷却取0.95,所以0.551/340.551/320.1030.36RePr0.3612.390.95649/()0.0202oeWmCd(1.04310)(3)、确定污垢热阻423.4410/iRsmCW(自来水)421.7410/oRsmCW(煤油)(4)、计算总传热系数0K(管壁热阻可忽略时,总传热系数0K为:)044211110.0250.0251.74103.44106490.025126.10.02419.5/()oooioiiiKddRsRsddWmC126.14.3725.419'00KK在(1.1~2.2)范围内,符合题意。3、计算压强降(1)、计算管程压强降12()PippFtNpNs前已算出:1.1496/uims3Re2.86310i(湍流)取不锈钢管壁的粗糙度0.1mm,则0.10.00520id由摩擦系数图查得0.034所以22169961.4960.0346713.1020.022iiuLPPad222339961.14961974.4422iuPPa对于252.5mm的管子,有Ft=1.5,且Np=4,Ns=1412()(6713.101974.44)1.5415.21310PippFtNpNsPa(2)、计算壳程压强降12()oPppFsNs由于1.15,1FsNs所以210(1)2ocBuPFfnN管子为正三角形排列,则取F=0.51.11.114413.2cnn折流挡板间距0.15hm折流板数611390.15BLhN20()0.15(0.613.20.025)0.0405ochD

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功