10引言一、材料的发展与人类社会的进步材料是人类社会进步的物质基础和先导,是人类进步的里程碑。当前材料、能源、信息和生物技术是现代科技的三大支柱,它会将人类物质文明推向新的阶段。21世纪将是一个新材料时代。2二、复合材料的提出现代高科技的发展更紧密地依赖于新材料的发展;同时也对材料提出了更高、更苛刻的要求。很明显,传统的单一材料无法满足以上综合要求,当前作为单一的金属、陶瓷、聚合物等材料虽然仍在不断日新月异地发展,但是以上这些材料由于其各自固有的局限性而不能满足现代科学技术发展的需要。复合材料,特别是先进复合材料就是为了满足以上高技术发展的需求而开发的高性能的先进材料。复合材料是应现代科学技术而发展出来的具有极大生命力的材料。3三、复合材料的发展历史和意义1、复合材料的发展历史6000年前人类就已经会用稻草加粘土作为建筑复合材料。水泥复合材料已广泛地应用于高楼大厦和河堤大坝等的建筑,发挥着极为重要的作用;20世纪40年代,美国用碎布酚醛树脂制备枪托、代替木材,发展成为玻璃纤维增强塑料(玻璃钢)这种种广泛应用的较现代化复合材料。42、复合材料的意义现代高科技的发展更是离不开复合材料。例如:火箭壳体材料对射程的影响,航空发动机材料发展预测如下561复合材料概述1.1复合材料的定义和特点:1、复合材料的定义:ISO定义为是:两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。复合材料应满足下面三个条件:(1)组元含量大于5%;(2)复合材料的性能显著不同于各组元的性能;(3)通过各种方法混合而成。72、复合材料的特点:1)由两种或多种不同性能的组分通过宏观或微观复合在一起的新型材料,组分之间存在着明显的界面。2)各组分保持各自固有特性的同时可最大限度地发挥各种组分的优点,赋予单一材料所不具备的优良特殊性能。3)复合材料具有可设计性。83、复合材料的基本结构模式复合材料由基体和增强剂两个组分构成:基体:构成复合材料的连续相;增强剂(增强相、增强体):复合材料中独立的形态分布在整个基体中的分散相,这种分散相的性能优越,会使材料的性能显著改善和增强。增强剂(相)一般较基体硬,强度、模量较基体大,或具有其它特性。可以是纤维状、颗粒状或弥散状。增强剂(相)与基体之间存在着明显界面。91.2复合材料的分类1、按性能分类:普通复合材料:普通玻璃、合成或天然纤维增强普通聚合物复合材料,如玻璃钢、钢筋混凝土等。先进复合材料:高性能增强剂(碳、硼、氧化铝、SiC纤维及晶须等)增强高温聚合物、金属、陶瓷和碳(石墨)等复合材料。先进复合材料的比强度和比刚度应分别达到400MPa/(g/cm3)和40GPa/(g/cm3)以上。102、按基体材料分类:聚合物复合材料金属基复合材料陶瓷基复合材料碳碳复合材料水泥基复合材料113、按用途分类结构复合材料功能复合材料结构/功能一体化复合材料4、按增强剂分类颗粒增强复合材料晶须增强复合材料短纤维增强复合材料连续纤维增强复合材料混杂纤维增强复合材料三向编织复合材料121.3复合材料的基本性能(优点):1、高比强度、高比模量(刚度):比强度=强度/密度MPa/(g/cm3),比模量=模量/密度GPa/(g/cm3)。132、良好的高温性能:目前:聚合物基复合材料的最高耐温上限为350C;金属基复合材料按不同的基体性能,其使用温度在3501100C范围内变动;陶瓷基复合材料的使用温度可达1400C;碳/碳复合材料的使用温度最高可达2800C。143、良好的尺寸稳定性:加入增强体到基体材料中不仅可以提高材料的强度和刚度,而且可以使其热膨胀系数明显下降。通过改变复合材料中增强体的含量,可以调整复合材料的热膨胀系数。4、良好的化学稳定性:聚合物基复合材料和陶瓷基复合材料。5、良好的抗疲劳、蠕变、冲击和断裂韧性:陶瓷基复合材料的脆性得到明显改善6、良好的功能性能152复合材料界面2.1复合材料界面复合材料的界面是指基体与增强相之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。复合材料的界面是一个多层结构的过渡区域,约几个纳米到几个微米。1、外力场2、基体3、基体表面区4、相互渗透区5、增强剂表面区6、增强剂16171、界面效应界面是复合材料的特征,可将界面的机能归纳为以下几种效应:(1)传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。(2)阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。(3)不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性和磁场尺寸稳定性等。18(4)散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性、耐机械冲击性等。(5)诱导效应:一种物质(通常是增强剂)的表面结构使另一种(通常是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强弹性、低膨胀性、耐热性和冲击性等。★界面效应是任何一种单一材料所没有的特性,它对复合材料具有重要的作用。192、界面的结合状态和强度界面的结合状态和强度对复合材料的性能有重要影响。对于每一种复合材料都要求有合适的界面结合强度。界面结合较差的复合材料大多呈剪切破坏,且在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象。界面结合过强的复合材料则呈脆性断裂,也降低了复合材料的整体性能。界面最佳态的衡量是当受力发生开裂时,裂纹能转化为区域化而不进一步界面脱粘;即这时的复合材料具有最大断裂能和一定的韧性。结合状态和强度影响因素202.2复合材料组分的相容性1、物理相容性:(1)基体应具有足够的韧性和强度,能够将外部载荷均匀地传递到增强剂上,而不会有明显的不连续现象。(2)由于裂纹或位错移动,在基体上产生的局部应力不应在增强剂上形成高的局部应力。(3)基体与增强相热膨胀系数的差异对复合材料的界面结合及各类性能产生重要的影响。21★对于韧性基体材料,最好具有较高的热膨胀系数。这是因为热膨胀系数较高的相,从较高的加工温度冷却时将受到张应力;★对于脆性材料的增强相,一般都是抗压强度大于抗拉强度,处于压缩状态比较有利。★而对于像钛这类高屈服强度的基体,一般却要求避免高的残余热应力,因此热膨胀系数不应相差太大。222、化学相容性:★对原生复合材料,在制造过程是热力学平衡的,其两相化学势相等,比表面能效应也最小。★对非平衡态复合材料,化学相容性要严重得多。1)相反应的自由能G:小2)化学势U:相近3)表面能T:低4)晶界扩散系数D:小232.3复合材料的界面理论*1、界面润湿理论界面润湿理论是基于液态树脂对纤维表面的浸润亲和,即物理和化学吸附作用。浸润不良会在界面上产生空隙,导致界面缺陷和应力集中,使界面强度下降。良好的或完全浸润可使界面强度大大提高,甚至优于基体本身的内聚强度。24根据力的合成:Lcos=S-SL粘合功可表示为:WA=S+L-SL=L(1+cos)粘合功WA最大时:cos=1,即=0,液体完全平铺在固体表面。同时:=SL,S=L润湿是组分良好粘结的必要条件,并非充分条件。252、机械作用理论:当两个表面相互接触后,由于表面粗糙不平将发生机械互锁。尽管表面积随着粗糙度增大而增大,但其中有相当多的孔穴,粘稠的液体是无法流入的。无法流入液体的孔不仅造成界面脱粘的缺陷,而且也形成了应力集中点。263、静电理论:当复合材料不同组分表面带有异性电荷时,将发生静电吸引。仅在原子尺度量级内静电作用力才有效。4、化学键理论:在复合材料组分之间发生化学作用,在界面上形成共价键结合。在理论上可获得最强的界面粘结能(210-220J/mol)。275、界面反应或界面扩散理论在复合材料组分之间发生原子或分子间的扩散或反应,从而形成反应结合或扩散结合。282.4界面的表征*1、界面结合强度的测定1)三点弯曲法:29★测定界面拉伸强度时纤维的排布★测定界面剪切强度时纤维的排布302)声发射(AcousticEmissin,AE)法:声发射是当固体材料在外部条件(如载荷、温度、磁场、环境介质等)发生变化时,由于其内部原因而产生的瞬时弹性应力波发射。声发射信号包括有材料内部缺陷或微观结构变化动态信息,借助灵敏的电子仪器可以检测到声发射信号。用仪器检测分析声发射信号,推断声发射源的技术称为声发射技术。31富碳处理的SiCF/Al拉伸过程中的AE行为富SiO2处理的SiCF/Al拉伸过程中的AE行为322、界面结构的表征界面的微观结构、形貌和厚度可通过先进仪器观察分析。包括:俄歇电子谱仪(AES)、电子探针(EP)X光电子能谱仪(XPS)扫描二次离子质谱仪(SSIMS)电子能量损失仪(EELS)X射线反射谱仪(GAXP)透射电子显微镜(TEM)扫描电镜(SEM)、拉曼光谱(Raman)等33TiB2纤维表面涂层SiCF/Ti复合材料界面SEM(黄线为连续线扫描)343、界面残余应力及其表征(1)界面残余应力复合材料成型后,由于基体的固化或凝固发生体积收缩或膨胀(通常为收缩),而增强体则体积相对稳定使界面产生内应力,同时又因增强体与基体之间存在热膨胀系数的差异,在不同环境温度下界面产生热应力。这两种应力的加和总称为界面残余应力。35(A)界面残余应力可以通过对复合材料进行热处理,使界面松弛而降低,但受界面结合强度的控制,在界面结合很强的情况下效果不明显。(B)界面残余应力的存在对复合材料的力学性能有影响,其利弊与加载方向和复合材料残余应力的状态有关。已经发现,由于复合材料界面存在残余应力使之拉伸与压缩性能有明显差异。36(2)界面残余应力的测量主要方法X射线衍射法和中子衍射法。★中子的穿透能力较X射线强,可用来测量界面内应力;其结果是很大区域的应力平均值。★X射线衍射法只能测定样品表面的残余应力。目前,应用最广泛的仍是传统的X射线衍射法。373复合材料的复合理论*3.1复合材料增强机制1、颗粒增强复合材料增强机制基体和颗粒共同承受外来载荷;颗粒起着阻碍基体位错运动的作用,从而降低了位错的移动性。另外,复合材料中的裂纹的扩展在颗粒前受阻,发生应力钝化或扩展路径发生偏转,同样可以消耗较多的断裂能,提高材料的强度。38颗粒增强复合材料的屈服强度可有下式表示:CV1dVbGG3PPPmy)-(=221式中:σy-复合材料屈服强度;Gm-基体的切变模量;b-为柏氏矢量;d-颗粒直径;C-常数VP-颗粒体积分数;Gp-颗粒的切变模量。392、弥散增强复合材料增强机制基体是承受外来载荷的主要相;颗粒起着阻碍基体位错运动的作用,从而降低了错的流动性。另外,复合材料中的裂纹的扩展在颗粒前受阻,发生应力钝化或扩展路径发生偏转,同样可以消耗较多的断裂能,提高材料的强度。40弥散增强复合材料的屈服强度可由下式表示:)1(21PP2myV3V2dbG式中:σy-复合材料屈服强度;Gm-基体的切变模量;b-为柏氏矢量;d-颗粒直径;VP-颗粒体积分数。413.纤维(包括晶须、短纤维)复合材料增强机制基体通过界面将载荷有效地传递到增强相(晶须、纤维等),不是主承力相。纤维承受由基体传递来的有效载荷,主承力相。受力分析如下:假定:纤维、基体理想结合,且松泊比相同;在外力作用下,由于组分模量的不同产生了不同形变(位移),在基体上产生了剪切应变,通过界面将外力传递到纤维上。4243短纤维增强复合材料的拉伸强度可由下式表示:fmfcFfFVV2ll11+式中:σm*-与纤维的屈服应变同时发生的基体应力;σfF-纤维的平均拉伸应力;Vf-纤维的体积分数;l-纤维的长度;lc-最大拉应力等于纤维断裂强度时纤维的强度,纤维的临界长度,。44分析上式可得:(1)l/lc愈大,复合材料的拉伸强度愈大。当l/lc=10时,增强效果可达到连续纤维的95%。(2)引入纤维直径d,(l/d)c为纤维临界长径比,当(l/d)c10时,复合材料