广东省2013年本科插班生招生考试大纲《高等数学》Ⅰ考试性质普通高等学校本科插班生招生考试是由专科毕业生参加的选拔性考试。高等学校根据考生的成绩,按照已确定的招生计划,德、智、体全面衡量,择优录取。因此,本科插班生考试应有较高信度、效度、必要的区分度和适当的难度。本大纲适用于所有需要参加《高等数学》考试的各专业考生。Ⅱ考试内容总体要求:考生应按本大纲的要求了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分初步和常微分初步的基本概念与基本理论,掌握或者熟练掌握上述各部分的基本方法。应理解各部分知识结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能运用基本概念、基本理论和基本方法,正确地判断和证明,准确地计算;能综合运用所掌握知识分析并解决简单的实际问题。第一部分函数、极限和连续㈠函数⒈考试内容⑴函数的概念:函数的定义,函数的表示法,分段函数。⑵函数的简单性质:单调性、奇偶性、有界性、周期性。⑶反函数。⑷函数的四则运处与复合运处。⑸基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。⑹初等函数。⒉考试要求⑴理解函数的概念,会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。⑵掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。⑶理解函数y=f(x)与它的反函数y=f-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。⑷掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。⑸掌握基本初等函数的简单性质及其图象。⑹掌握初等函数的概念。㈡极限⒈考试内容:⑴数列和数列极限的定义。⑵数列极限的性质:唯一性、有界性、四则运算定理、夹逼定理、单调有界数列极限存在性定理。⑶函数极限的概念:函数在一点处的极限定义,左、右极限及其与极限有关系,趋于无穷大(x→∞,x→+∞,x→-∞)时函数极限的定义,函数极限的几何意义。⑷函数极限的性质:唯一性、有界性、四则运算定理。⑸无穷小量与无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的性质,两个无穷小量阶的比较。⑹两个重要极限:limx→0sinxx=1,limx→∞(1+1x)x=e。⒉考试要求⑴了解极限的概念(不要求用“ε-N”,“ε-δ”,“ε-X”语言证明具体极限的存在性),掌握函数在一点处的左极限与右极限的概念,极限存在的充分必要条件。⑵了解极限的有关性质,掌握极限的四则运算法则。⑶理解无穷小量、无穷大量的概念,掌握无穷小量的性质,会进行无穷小量阶的比较(高阶、低阶、同阶、等阶)。⑷熟练掌握用两个重要极求极限的方法。㈢连续⒈考试内容⑴函数连续的概念:函数在一点连续、左连续和右连续的定义,函数在一点连续的充分必要条件,函数的间断点及其分类。⑵函数连续的性质:四则运算连续性、复合函数连续性。⑶闭区间上连续函数的性质:有界性定理、最大值与最小值定理、介值性定理(含零点定理)。⑷初等函数的连续性⒉考试要求⑴理解函数在一点连续与间断的概念,掌握判断函数(含分段函数)在一点处连续的方法,理解函数在一点连续与极限存在之间的关系。⑵会求函数的间断点并确定其类型(第一类间断点、第二类间断点)。⑶理解在闭区间上连续函数的性质。⑷理解初等函数在其定义区间上连续性,并会利用函数连续性求极限。二、一元函数微分学㈠导数与微分⒈考试内容⑴导数概念:导数、左导数与右导数的定义,导数的几何意义,可导与连续的关系。⑵导数的基本公式。⑶求导方法:函数的四则运算求导法、复合函数的求导法、隐函数的求导法、对数求导法、由参数方程所确定的函数的导数求法。⑷高阶导数的定义,高阶导数的计算。⑸微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性。⒉考试要求⑴理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。⑵会求曲线上一点处的切线方程和法线方程。⑶熟练掌握导数的基本公式、四则运算法则、反函数的求导法则以及复合函数的求导方法。⑷掌握隐函数的求导法、对数求导法和由参数方程所确定的函数的导数求法。⑸理解高阶导数的概念,会求函数的二、三阶导数。⑹理解微分的概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。㈡中值定理及导数的应用⒈考试内容⑴中值定理:罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理。⑵洛必达(L,Hospital)法则。⑶函数单调性的判定法。⑷函数极值与极值点、最大值与最小值。⑸曲线的凹凸性、拐点。⑹函数曲线的水平渐近线及铅垂渐近线。⒉考试要求⑴了解罗尔中值定理、拉格朗日中值定理及其应用,了解柯西中值定理(知道事实上理的条件及结论)。⑵熟练掌握应用洛必达法则求“00”“∞∞”“0·∞”“∞-∞”“1∞”“00”和“∞0”型未定式极限的方法。⑶掌握利用导数判定函数的单调性及求函数的单调区间的方法,会利用函数的单调性证明简单的不等式。⑷理解函数极值的概念,掌握求函数的极值、最大值和最小值的方法,并会应用极值方法解应用题。⑸会判定曲线的凹凸性,会求曲线的拐点。⑹会求曲线的水平渐近线及铅垂渐近线方程。三、一元函数积分学㈠不定积分⒈考试内容⑴原函数与不定积分的定义,不定积分的性质。⑵基本积分公式。⑶换元积分法:第一换元法(凑微积分法)、第二换元法。⑷分部积分法。⑸一些简单有理函数的微积分。⒉考试要求⑴理解原函数与不定积分的概念及其关系,掌握不定积分的性质。⑵熟练掌握不定积分的基本公式。⑶熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)⑷熟练掌握不定积分分部积分法。⑸掌握简单有理函数的不定积分。㈡定积分⒈考试内容⑴定积分的定义及其几何意义,可积条件。⑵定积分的性质。⑶定积分的计算:变上限的定积分,牛顿—莱布尼兹(Nenton-leibniz)公式,换元积分法,分部积分法。⑷掌握牛顿—莱布尼兹公式。⑸掌握定积分的换元法与分部积分法。⑹了解无穷区间广义积分的概念,并会进行计算。⑺掌握直角坐标下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积的方法。⑻了解直角坐标下计算平面曲线弧长(含参数方程)的方法。四、多元函数微积分学初步⒈考试内容⑴多元函数的概念:多元函数的定义,二元函数的定义域。⑵偏导数与全微分:一阶偏导数,高阶偏导数,全微分。⑶复合函数的概念,隐函数的偏导数。⑷二重积分的概念,二重积分的性质,直角坐标及坐标下二重积分的计算。⒉考试要求⑴理解多元函数的概念,会求二元函数的定义域,了解二元函数的几何意义。⑵理解二元函数的一阶偏导数和全微分的概念,掌握二元函数的一阶偏听导数及二阶偏导数的求法,掌握二元函数全微分的求法。⑶掌握复合函数与隐函数的偏导数的求法。⑷理解二重积分的概念,掌握二重积分的性质,掌握直角坐标及极坐标下二重积分的计算方法。五、常微分方程初步⒈考试内容⑴微积分方程的基本概念。⑵一阶微分方程:可分离变量的微分方程、一阶线性微分方程。⑶二阶常系数线性齐次方程。⒉考试要求⑴了解微分方程的阶、解、通解、特解及初值条件等基本概念。⑵会求可分离变量的微分方程、一阶线性微分方程的通解及特解。⑶会求二阶常系数线性齐次微分方程的通解及特解。Ⅲ.考试形式及试卷结构一、考试形式闭卷、笔试工,试卷满分为100分,考试时间为120分钟,考生使用答题卡答题。二、试卷内容比例函数、极限和连续约占20%一元函数微分学约占27%一元函数积分学约占23%多元函数微积分学初步约占20%常微分方程初步约占10%三、试卷题型比例单项选择题约占15%填空题约占15%计算题约占48%综合题约占22%四、试卷难易度比例试题按其难度分为容易、中等题、难题,三种试题分值的比例为4:4:2Ⅳ.题型示例一、单选择题二、填空题三、计算题四、综合题示例具体参见参考书考试大纲Ⅴ.参考书目①同济大学数学教研室主编:《高等数学》(第六版)(上、下册),北京:高等教育出版社,②赵树嫄主编:《微积分》(修订版),北京:中国人民大学出版社③张德舜主编:《高等数学》,北京,中国医药科技出版社,