对数的运算0,10aaNbR且性质:log1.aNaa3.log10a4.log1aa2.负数和0没有对数(,)(,)()(,)()()mnmnmmnnmnmnnnnaaamnRaamnRaaamnRababnR指数运算法则:logaMlogaN=?+设,logpMa,logqNa由对数的定义可以得:,paMqaN∴pqaapqalogaMNpq即得MNMNaaaloglogMlogNnaMlog)(logMMMan个MMMaaalogloglogn个MnalogMnManaloglog?lognaM?loglogNMaaNMaaloglogNMaalog)1(log1loglogNMaa1logMNaNMalogNMNMaaalogloglog)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa①简易语言表达:“积的对数=对数的和”……②有时逆向运用公式③真数的取值范围必须是),0(④对公式容易错误记忆,要特别注意:,loglog)(logNMMNaaaNMNMaaaloglog)(log0,0,10NMaa且同底的对数运算:当练习(1)(4)(3)(2)1.求下列各式的值:15log5log332lg5lg31log3log553log6log2236log22log21)25lg(10lg1)313(log51log50155log3133log1(1)18lg7lg37lg214lg练习计算:解法一:18lg7lg37lg214lg18lg7lg)37lg(14lg218)37(714lg201lg)32lg(7lg37lg2)72lg(2)3lg22(lg7lg)3lg7(lg27lg2lg018lg7lg37lg214lg解法二:例1解(1)解(2)用,logxa,logyazalog表示下列各式:23;(2)log(1)logaaxyxyzzzxyzxyaaalog)(loglog3121232log)(loglogzyxzyxaaazyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log23logaxyz234logaxyz1logloglog211logloglog2342aaaaaaxyzxyz解:(3)原式()原式=+-75lg20lg4521lg2lg4lg25lg254log22练习:()100()+(3)+()(2)计算:9lg243lg3lg23lg525解:1023lg)10lg(32lg)3lg(2.1lg10lg38lg27lg)3(2213213253lg3lg9lg243lg)2(2.1lg10lg38lg27lg)3(12lg23lg)12lg23(lg23232.用lgx,lgy,lgz表示下列各式:练习(1)(4)(3)(2))lg(xyzzxy2lgzxy3lgzyx2lg21=lgx+2lgy-lgz;=lgx+lgy+lgz;=lgx+3lgy-lgz;zyxlglg2lg21其他重要公式1:NmnNanamloglog证明:设,logpNnam由对数的定义可以得:,)(pmnaN即证得NmnNanamloglog∴mpnaNpnmNalogpnmaN例1、计算:3log12.054312log27log32(1)(2)(3)100lg20log25其他重要公式2:aNNccalogloglog)0),,1()1,0(,(Nca证明:设由对数的定义可以得:,paN即证得pNalog,loglogpccaN,loglogapNccaNpccloglogaNNccalogloglog换底公式练习8log7log3log732解:8log7log3log7322lg3lg2lg2lg32lg2lg3=33lg7lg7lg8lg例3、若2loglog8log4log4843m求m计算:logloglog1.(,,(0,1)(1,),0)abcbcNaabcN2123422.log(21)2lg12log10log10log(log)3.1,1,,logpbbbaabpaa其他重要公式3:abbalog1log),1()1,0(,ba证明:由换底公式取以b为底的对数得:还可以变形,得,1logbbaNNccalogloglogabbbbalogloglogabbalog1log1loglogabba421938432log)2log2)(log3log3(log例2、计算:小结:积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa其他重要公式:NmnNanamloglogaNNccalogloglog)0),,1()1,0(,(Nca1loglogabba),1()1,0(,ba627log16a12练习:1.已知log,求的值。2.已知:632236abc求证:123abc3.已知a,b,c是△ABC的三边,且关于x的方程有等根,判断△ABC的形状.2222lg()2lg10xxcba