1数学核心素养解释意义数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。数学抽象主要包括从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。数学抽象是数学的基本思想,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。抽象能力的素养是形成理性思维的重要基础。在数学教学活动中,注重抽象能力的培养,有利于学生养成一般性思考问题的习惯,有利于学生更好的理解数学的概念、命题、结构和系统,有利于学生在其他学科的学习中化繁为简,理解该学科的知识结构和本质特征。逻辑推理数学逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程,主要包括两类,一类是从小范围成立的命题推断更大范围内成立的命题的推理,主要有归纳、类比;一类是从大范围成立的命题推断小范围内也成立的推理,主要有演绎推理。命题是数学结论的主要形式,也是数学交流的主要内容,因此,逻辑推理是数学交流的基本品质,使数学交流具有逻辑性。逻辑推理是数学思维的主要形式,是发现、提出数学命题以及论证命题正确与否的重要手段,也是构建数学体系的重要方式.逻辑推理不仅保证了数学的严谨性,也保证了数学交流的严谨性。逻辑推理与交流是数学教学活动的核心,也是培养科学素养的重要途径.逻辑推理与交流核心素养的习得,可以使人们的交流合乎逻辑,提高交流的效率和效果。在数学教学活动中,注重逻辑推理与交流核心素养的培养,有利于学生理解一般结论的来龙去脉、形成举一反三的能力,有利于学生形成有论据、有条理、合乎逻辑的思维习惯和交流能力,有利于学生提高探究事物本源的能力。数学建模数学建模是对现实问题进行抽象,用数学语言表达和解决实际问题的过程。数学建模能力指能够在实际情境中,从数学的视角提出问题,用数学的思想分析问题,用数学的语言表达问题,用数学的知识得到模型,用数学的方法得到结论,验证数学结论与实际问题的相符程度,不断反思和改进模型,最终得到符合实际规律的结果。数学模型构建了数学与外部世界的桥梁,是数学应用的基本形式。数学建模是应用数学解决实际问题的基本手段,是推动数学发展的外部驱动力。建模能力与反思突出学生系统地运用数学知识解决实际问题的过程,帮助学生逐步积累数学活动经验,培养学生应用能力和创新意识。在数学教学活动中,加强建模能力与反思核心素养的培养,有利于学生养成用数学的眼光观察现实世界的2反思贯穿于数学建模的全过程。习惯,有利于学生发展用数学的思维分析实际问题的能力,有利于学生形成用数学的语言表达实际问题的能力。数学运算运算能力是指在明晰运算对象的基础上,依据运算法则解决数学问题的能力。主要包括理解运算对象、探究运算方向、选择运算方法、设计运算程序、求得运算结果的能力。运算是构成数学抽象结构的基本要素,是演绎推理的重要形式,是得到数学结果的重要手段。科学技术的迅猛发展更加凸显了运算的重要性。运算能力是解决数学问题的基本能力,是数学应用于日常生活的基本技能,是用计算机解决问题必备的能力。运算能力是学生学会数学的基础,在数学教学活动中,培养学生运算能力的核心素养,有利于学生提升逻辑推理的能力,有利于学生培养程序化思考问题的习惯,有利于学生养成实事求是、一丝不苟的科学精神。直观想象几何直观与想象主要指借助空间想象感知事物的形态与变化,利用几何图形理解和解决数学问题。主要包括利用图形描述数学问题,启迪解决问题的思路,建立形与数的联系,加深对事物本质和发展规律的理解和认知。几何直观与想象是理解和发现、提出数学命题的重要辅助手段,是构建抽象结构和进行逻辑推理的思维基础。几何直观与想象是建立数学直觉的基本途径。在数学教学活动中,重视几何直观与想象核心素养的培养,有利于学生养成运用图形和空间想象思考问题的习惯,有利于学生提升数形结合的能力,有利于学生形成借助图形和空间想象进行分析、推理、论证的能力。数据分析数据分析与知识获取是从数据中获得有用信息,形成知识。数据包括记录、调查和试验获得的数集,现代数据还包括通过互联网、文本、声音、图像、视频等数字化得到的数集。数据分析与知识获取包括收集数据提取信息、利用图表展示数据、构建模型分析数据、解释数据获取知识。伴随着大数据时代的到来,数据分析与知识获取已经深入到现代社会生活的各个方面,开拓了数学研究与应用的领域。数据分析与知识获取充分体现了归纳推理的有效性,体现了归纳推理是逻辑推理的本质特征。数据分析与知识获取能力已经成为公民应当具备的基本素养。在数学教学活动中,注重培养学生数据分析与获取知识的能力,有利于学生养成基于数据探究事物变化规律的习惯,有利于学生提升基于数据表达现实问题的能力,有利于学生学会基于数据提取有用信息、获得知识的能力。